首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   25篇
  国内免费   1篇
测绘学   8篇
大气科学   53篇
地球物理   111篇
地质学   203篇
海洋学   60篇
天文学   60篇
综合类   1篇
自然地理   66篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   13篇
  2018年   15篇
  2017年   15篇
  2016年   19篇
  2015年   19篇
  2014年   31篇
  2013年   43篇
  2012年   31篇
  2011年   33篇
  2010年   38篇
  2009年   22篇
  2008年   31篇
  2007年   26篇
  2006年   25篇
  2005年   27篇
  2004年   17篇
  2003年   15篇
  2002年   17篇
  2001年   9篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   9篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1934年   1篇
排序方式: 共有562条查询结果,搜索用时 23 毫秒
501.
Soil characteristics in palaeosols are an important source of information on past climate and vegetation. Fingerprinting of soil organic matter (SOM) by pyrolysis-GC/MS is assessed as a proxy for palaeo-reconstruction in the complex of humic layers on top of the Rocourt pedosequence in the Veldwezelt-Hezerwater outcrop (Belgian loess belt). The fingerprints of the extractable SOM of different soil units are related to total organic carbon content, δ13C and grain-size analysis. Combined results indicate that the lower unit of the humic complex reflects a stable soil surface, allowing SOM build-up, intensive microbial activity and high decomposition. Higher in the profile, decomposition and microbial activity decrease. This is supported by a shift in the isotopic signal, an increased U ratio and evidence of wildfires. Although the chemical composition of the extracted SOM differed greatly from recent SOM, fingerprinting yielded detailed new information on SOM degree of decomposition and microbial contribution, allowing the reconstruction of palaeo-environmental conditions during pedogenesis.  相似文献   
502.
Water quality monitoring in Hanalei Bay, Kaua`i (Hawai`i, USA) has documented intermittent high concentrations of nutrients (nitrate, phosphate, silica, and ammonium) and fecal indicator bacteria (FIB, i.e., enterococci and Escherichia coli) in nearshore waters and spurred concern that contaminated groundwater might be discharging into the bay. The present study sought to identify and track sources of nutrients and FIB to four beaches in Hanalei Bay and one beach outside the bay, together representing a wide range of land uses. 223Ra and 224Ra activity, salinity, nutrient and FIB concentrations were measured in samples from the coastal aquifer, the nearshore ocean, springs, the Hanalei River, and smaller streams. In addition, FIB concentrations in beach sands were measured at each site, and the enterococcal surface protein (esp) gene assay was used to investigate whether the observed FIB originated from a human source. Nutrient concentrations in groundwater were significantly higher than in nearshore water, inversely correlated to salinity, and highly site specific, indicating local controls on groundwater quality. Fluxes of groundwater into Hanalei Bay were calculated using a mass-balance approach and represented at least 2–10% of river discharges. However, submarine groundwater discharge (SGD) may provide 2.7 times as much nitrate + nitrite to Hanalei Bay as does the Hanalei River. It may also provide significant fluxes of phosphate and ammonium, comprising 15% and 20% of Hanalei River inputs, respectively. SGD-derived silica inputs to the bay comprised less than 3% of Hanalei River inputs. FIB concentrations in groundwater were typically lower than those in nearshore water, suggesting that significant FIB inputs from SGD are unlikely. Positive esp gene assays suggested that some enterococci in environmental samples were of human fecal origin. Identifying how nutrients and FIB enter nearshore waters will help environmental managers address pressing water quality issues, including exceedances of the state Enterococcus water quality standard and nutrient loading to coral reefs.  相似文献   
503.
Depth profiles of solute chemistry and sulfate isotopic compositions are presented for groundwater and pore water in a sequence of Quaternary glacial outwash sediments. Sand units show evidence for hydraulic connection to the surface and thus modern sources of solutes. Finer‐grained sediments show a general pattern of increasing solute concentrations with depth, with sulfate derived from ancient rainwater and pyrite oxidation in the soil/drift. In these sediments sulfate has undergone bacterial sulfate reduction (BSR) to produce biogenic sulfide. In clay sediments, with d10 ≤ 1·6 µm, high concentrations of sulfate and acetate now co‐exist, implying that BSR is inhibited. The correlation with smaller sediment grain size indicates that this is due to pore size exclusion of the sulfate reducing bacteria. Mechanical restriction of microbial function thus provides a fundamental limitation on microbial respiration in buried clay‐rich sediments, which acts as a control on the chemical evolution of their pore waters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
504.
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree‐day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash–Sutcliffe metric ~0.84, annual volume bias < 3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002–2006 period is estimated to be 29.7 ± 2.9% (which includes 4.2 ± 0.9% from snowfall that promptly melts), whereas 70.3 ± 2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000–5500 m range contributes the most to basin runoff, averaging 56.9 ± 3.6% of all snowmelt input and 28.9 ± 1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree‐day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
505.
The increasing array size of radio astronomy interferometers is causing the associated computation to scale quadratically with the number of array signals. Consequently, efficient usage of alternate processing architectures should be explored in order to meet this computational challenge. Affordable parallel processors have been made available to the general scientific community in the form of the commodity graphics card. This work investigates the use of the Graphics Processing Unit in the parallelisation of the combined conjugate multiply and accumulation stage of a correlator for a radio astronomy array. Using NVIDIA’s Compute Unified Device Architecture, our testing shows processing speeds from one to two orders of magnitude faster than a Central Processing Unit approach.  相似文献   
506.
Multivariate statistical methods for online process monitoring have been widely applied to chemical, biological, and engineered systems. While methods based on principal component analysis (PCA) are popular, more recently kernel PCA (KPCA) and locally linear embedding (LLE) have been utilized to better model nonlinear process data. Additionally, various forms of dynamic and adaptive monitoring schemes have been proposed to address time-varying features in these processes. In this analysis, we extend a common simulation study in order to account for autocorrelation and nonstationarity in process data and comprehensively compare the monitoring performances of static, dynamic, adaptive, and adaptive–dynamic versions of PCA, KPCA, and LLE. Furthermore, we evaluate a nonparametric method to set thresholds for monitoring statistics and compare results with the standard parametric approaches. We then apply these methods to real-world data collected from a decentralized wastewater treatment system during normal and abnormal operations. From the simulation study, adaptive–dynamic versions of all three methods generally improve results when the process is autocorrelated and nonstationary. In the case study, adaptive–dynamic versions of PCA, KPCA, and LLE all flag a strong system fault, but nonparametric thresholds considerably reduce the number of false alarms for all three methods under normal operating conditions.  相似文献   
507.
Herbicide residues have been measured in the Great Barrier Reef lagoon at concentrations which have the potential to harm marine plant communities. Monitoring on the Great Barrier Reef lagoon following wet season discharge show that 80% of the time when herbicides are detected, more than one are present. These herbicides have been shown to act in an additive manner with regards to photosystem-II inhibition. In this study, the area of the Great Barrier Reef considered to be at risk from herbicides is compared when exposures are considered for each herbicide individually and also for herbicide mixtures. Two normalisation indices for herbicide mixtures were calculated based on current guidelines and PSII inhibition thresholds. The results show that the area of risk for most regions is greatly increased under the proposed additive PSII inhibition threshold and that the resilience of this important ecosystem could be reduced by exposure to these herbicides.  相似文献   
508.
Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring.  相似文献   
509.
The development of accurate predictive models of toxic dinoflagellate blooms is of great ecological importance, particularly in regions that are most susceptible to their detrimental effects. This is especially true along the west Florida shelf (WFS) and coast, where episodic bloom events of the toxic dinoflagellate Karenia brevis often wreak havoc on the valuable commercial fisheries and tourism industries of west Florida. In an effort to explain the dynamics at work within the maintenance and termination phases of a red tide, a simple three-dimensional coupled biophysical model was used in the analysis of the October 1999 red tide offshore Sarasota, Florida. Results of the numerical experiments indicate that: (1) measured and modeled flowfields were capable of transporting the observed offshore inoculum of K. brevis to within 16 km of the coastal boundary; (2) background concentrations (1000 cells L−1) of K. brevis could grow to a red tide of over 2×106 cells L−1 in little more than a month, assuming an estuarine initiation site with negligible offshore advection, no grazing losses, negligible competition from other phytoplankton groups, and no nutrient limitation; (3) maximal grazing pressure could not prevent the initiation of a red tide or cause its termination, assuming no other losses to algal biomass and a zooplankton community ingestion rate similar to that of Acartia tonsa; and (4) the light-cued ascent behavior of K. brevis served as an aggregational mechanism, concentrating K. brevis at the 55 μE m−2 s−1 isolume when mean concentrations of K. brevis exceeded 100,000 cells L−1. Further improvements in model fidelity will be accomplished by the future inclusion of phytoplankton competitors, disparate nutrient availability and limitation schemes, a more realistic rendering of the spectral light field and the attendant effects of photo-inhibition and compensation, and a mixed community of vertically-migrating proto- and metazoan grazers. These model refinements are currently under development and shall be used to aid progress toward an operational model of red tide forecasting along the WFS.  相似文献   
510.
The region located between the Carpathian–Balkan and Aegean arcs, the Moesian Platform and Bulgarian Rhodope, is generally assumed to have been stably attached to the East European craton during the Cenozoic evolution of these arcs. The kinematic evolution of this region is, however, poorly constrained by paleomagnetic analysis. In this paper we provide new paleomagnetic data (800 volcanic and sedimentary samples from 12 localities) showing no significant post-Eocene rotation of the Moesian platform and Rhodope with respect to Eurasia, therefore confirming the stability of this region. We compare this result to a provided review of paleomagnetic data from the South Carpathians (Tisza block) and the Aegean region. The Tisza block underwent 68.4 ± 16.7° of middle Miocene ( 15–10 Ma) clockwise rotation with respect to the Moesian Platform, in line with previous rotation estimates based on structural geology. The stability of the Moesian platform during middle Miocene eastward emplacement of the Tisza block into the Carpathian back-arc supports dextral shear along the Southern Carpathians recorded by 13–6 Ma clockwise strike-slip related rotations in foreland deposits. The new reference direction for the Moesian platform and Rhodope allows accurate quantification of the rotation difference with the west Aegean domain at 38.0 ± 7.2° occurring between 15 and 8 Ma. To accommodate this rotation, we propose that the pivot point of the west-Aegean rotation was located approximately in the middle of the rotating domain rather than at the northern tip as previously proposed. This new scenario predicts less extension southeast of the pivot point, in good agreement with estimates from Aegean structural geology. Northwest of the pivot point, the model requires contraction or extrusion that can be accommodated by the coeval motion of the Tisza Block around the northwestern edge of the Moesian platform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号