首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  国内免费   1篇
大气科学   3篇
地球物理   19篇
地质学   20篇
海洋学   7篇
天文学   2篇
自然地理   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1963年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
51.
To evaluate their response to oceanographic conditions, interannual variations in seasonal abundance of Eucalanus bungii were investigated in zooplankton samples collected from the Oyashio Current system from 1960 to 2002. Large decadal changes were observed in seasonal timing and population age-structure. During the early 1970s and 1990s, E. bungii were abundant until mid-summer, but during the late 1970s and early 1980s, the season of maximum abundance was limited to spring and early summer. From the late 1970s to early 1980s, spring–summer abundance of newly recruited young copepodites (C1–C2) declined significantly, and an even more pronounced decline was observed for the abundance of the late copepodite stages (C3–C5). Monthly population structure showed that young of the year stopped development at C3 during the late 1970s to early 1980s, but molted into late copepodite stages in the other decades. Seasonal weakening of the Aleutian Low Pressure System estimated from North Pacific Index (NPI) was rapid during the late 1970s to early 1980s, and the NPI was positively correlated with phosphate concentrations at sea surface, spring–summer abundance of the young copepodites stages, and the extended duration of the season of high abundance. These results suggest that the decadal decline of copepod abundance originated at the early life stages, and was associated with a shift of atmospheric and oceanographic conditions. As possible biological mechanisms, we propose reduced egg production, lower survival for the portion of the annual cohort with late birth date, and overwintering of the survivors at younger stages.  相似文献   
52.
The western subarctic gyre (WSG) and the eastern Alaska Grye (AG) on each side of the subarctic North Pacific, have many similarities. In both gyres, macronutrients are generally high and chl is low, and hence both gyres are High Nitrate, Low Chlorophyll (HNLC) regions. Despite the general similarities between these two gyres, there are many important differences. The time series station established at Stn KNOT on the southwest edge of the WSG and two in situ mesoscale iron enrichment experiments at each of the gyres has provided more information on iron concentrations, the dual role of iron and silicate limitation and seasonal cycles in the gyres. There is more seasonality in many parameters at Stn KNOT than at Stn P. There is an increase in Chl and primary productivity at Stn KNOT in May followed by increased iron limitation in summer. Low DIC:NO3 ratios and high Si:NO3 ratios in the WSG, indicate lower calcification and higher diatom production than at Stn P. The sources of iron for these areas are still not clear, but horizontal transport of iron rich coastal water and vertical transport could be important sources at certain times of the year in addition to dust input. Satellite images show that chl-rich coastal waters occasionally extend to the vicinity of Stn KNOT and therefore Stn KNOT may not always represent conditions in the main part of the WSG. This review focuses mainly on a comparison of Stn KNOT and Stn P, two time series stations on the edge of two very large gyres. At present, we have a limited understanding of the temporal and spatial variability within each of these large gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
53.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   
54.
Nine submersible dives were made in three trenches off central Japan, between 2990 and 5900 m of water depth. Our observations confirm the interpretation that Daiichi-Kashima Seamount is a Cretaceous guyot formed on the Pacific plate that has traveled into the Japan Trench. We also confirmed the previous interpretation of a large normal fault that splits the seamount in two halves, the lower one being now subducting beneath the Japan margin. Compressional deformation was identified within the lower part of the inner slope in front of the seamount. The pattern of deformation that affects Quaternary sediments is in agreement with the present kinematics of the convergence between the Pacific plate and Japan. Deep-water (5700 m) clam colonies are associated with advection of fluids, driven by the subduction-related overpressures. In the northern slope of the Boso Canyon, along the Sagami Trough system (Philippine Sea plate-Japan boundary), the deformation affecting a thick upper Miocene to lower Pliocene sequence indicates two directions of shortening: a N175°E direction which is consistent with the present relative motion along the Sagami Trough (N285–N300°E) and a N30°E direction which could be related to a more northerly direction of convergence that occured during the early Quaternary and earlier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号