首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   5篇
  国内免费   3篇
测绘学   3篇
大气科学   10篇
地球物理   40篇
地质学   41篇
海洋学   10篇
天文学   44篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   3篇
  2012年   4篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   5篇
  2006年   8篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
141.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   
142.
143.
Examined here is a hypothetical idea of the splitting of the subtropical gyre in the western North Pacific on the basis of two independent sources of data,i.e., the long-term mean geopotential-anomaly data compiled by the Japanese Oceanographic Data Center and the synoptic hydrographic (STD) data taken by the Hakuho Maru in the source region of the Kuroshio and the Subtropical Countercurrent in the period February and March 1974. Both of the synoptic and the long-term mean dynamic-topographic maps reveal three major ridges, which indicate that the western subtropical gyre is split into three subgyres. Each subgyre is made up of the pair of currents, the Kuroshio and the Kuroshio Countercurrent, the Subtropical Countercurrent and a westward flow lying just south of the Countercurrent (18°N–21°N), and the northern part of the North Fquatorial Current and an eastward flow at around 18°N. The subgyres are more or less composed of a train of anticyclonic eddies with meridional scales of between 300 and 600 km, so that the volume transport of the subgyres varies by a factor of two or more from section to section. The upper-water characteristics also support the splitting of the subtropical gyre; the water characteristics are fairly uniform within each subgyre, but markedly different between them. The northern rim of each subgyre appears as a sharp density front accompanied by an eastward flow. The bifurcations of the sharp density fronts across the western boundary current indicate that the major part of the surface waters in the North Equatorial Countercurrent is not brought into the Kuroshio. The western boundary current appears as a continuous feature of high speed, but the waters transported change discontinuously at some places.  相似文献   
144.
145.
146.
Sumisu volcano was the site of an eruption during 30–60 ka that introduced ∼48–50 km3 of rhyolite tephra into the open-ocean environment at the front of the Izu-Bonin arc. The resulting caldera is 8 × 10 km in diameter, has steep inner walls 550–780 m high, and a floor averaging 900 m below sea level. In the course of five research cruises to the Sumisu area, a manned submersible, two ROVs, a Deep-Tow camera sled, and dredge samples were used to study the caldera and surrounding areas. These studies were augmented by newly acquired single-channel seismic profiles and multi-beam seafloor swath-mapping. Caldera-wall traverses show that pre-caldera eruptions built a complex of overlapping dacitic and basaltic edifices, that eventually grew above sea level to form an island about 200 m high. The caldera-forming eruption began on the island and probably produced a large eruption column. We interpret that prodigious rates of tephra fallback overwhelmed the Sumisu area, forming huge rafts of floating pumice, choking the nearby water column with hyperconcentrations of slowly settling tephra, and generating pyroclastic gravity currents of water-saturated pumice that traveled downslope along the sea floor. Thick, compositionally similar pumice deposits encountered in ODP Leg 126 cores 70 km to the south could have been deposited by these gravity currents. The caldera-rim, presently at ocean depths of 100–400 m, is mantled by an extensive layer of coarse dense lithic clasts, but syn-caldera pumice deposits are only thin and locally preserved. The paucity of syn-caldera pumice could be due to the combined effects of proximal non-deposition and later erosion by strong ocean currents. Post-caldera edifice instability resulted in the collapse of a 15° sector of the eastern caldera rim and the formation of bathymetrically conspicuous wavy slump structures that disturb much of the volcano’s surface.  相似文献   
147.
Abstract West Rota Volcano (WRV) is a recently discovered extinct submarine volcano in the southern Mariana Arc. It is large (25 km diameter base), shallow (up to 300 m below sealevel), and contains a large caldera (6 × 10 km, with up to 1 km relief). The WRV lies near the northern termination of a major NNE‐trending normal fault. This and a second, parallel fault just west of the volcano separate uplifted, thick frontal arc crust to the east from subsiding, thin back‐arc basin crust to the west. The WRV is distinct from other Mariana Arc volcanoes: (i) it consists of a lower, predominantly andesite section overlain by a bimodal rhyolite‐basalt layered sequence; (ii) andesitic rocks are locally intensely altered and mineralized; (iii) it has a large caldera; and (iv) WRV is built on a major fault. Submarine felsic calderas are common in the Izu and Kermadec Arcs but are otherwise unknown from the Marianas and other primitive, intraoceanic arcs. 40Ar–39Ar dating indicates that andesitic volcanism comprising the lower volcanic section occurred 0.33–0.55 my ago, whereas eruption of the upper rhyolites and basalts occurred 37–51 thousand years ago. Four sequences of rhyolite pyroclastics each are 20–75 m thick, unwelded and show reverse grading, indicating submarine eruption. The youngest unit consists of 1–2 m diameter spheroids of rhyolite pumice, interpreted as magmatic balloons, formed by relatively quiet effusion and inflation of rhyolite into the overlying seawater. Geochemical studies indicate that felsic magmas were generated by anatexis of amphibolite‐facies meta‐andesites, perhaps in the middle arc crust. The presence of a large felsic volcano and caldera in the southern Marianas might indicate interaction of large normal faults with a mid‐crustal magma body at depth, providing a way for viscous felsic melts to reach the surface.  相似文献   
148.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号