首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   16篇
地质学   11篇
海洋学   18篇
天文学   31篇
综合类   1篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
31.
Understanding the exhumation process of deep-seated material within subduction zones is important in comprehending the tectonic evolution of active margins. The deformation and slip history of superficial nappe pile emplaced upon high-P/T type metamorphic rocks can reveal the intimate relationship between deformation and transitions in paleo-stress that most likely arose from changes in the direction of plate convergence and exhumation of the metamorphic terrane. The Kinshozan–Atokura nappe pile emplaced upon the high-P/T type Sanbagawa (= Sambagawa) metamorphic rocks is the remnant of a pre-existing terrane located between paired metamorphic terranes along the Median Tectonic Line (MTL) of central Japan. Intra- and inter-nappe structures record the state of paleo-stress during metamorphism and exhumation of the Sanbagawa terrane. The following tectonic evolution of the nappes is inferred from a combined structural analysis of the basal fault of the nappes and their internal structures. The relative slip direction along the hanging wall rotated clockwise by 180°, from S to N, in association with a series of major tectonic changes from MTL-normal contraction to MTL-parallel strike-slip and finally MTL-normal extension. This clockwise rotation of the slip direction can be attributed to changes in the plate-induced regional stress state and associated exhumation of the deep-seated Sanbagawa terrane from the Late Cretaceous (Coniacian) to the Middle Miocene.  相似文献   
32.
Observations of nine oxygen- and sulfur-containing organic molecules have been made toward the cold dark clouds TMC-1 and L134N. We have confirmed the presence of para-ketene (H2C2O) in TMC-1, have for the first time observed ortho-ketene, and find a total ketene column density approximately 1 x 10(13) cm-2. Thioformaldehyde (H2CS) is easily detectable in both TMC-1 and L134N, with a column density about 5 times larger in the former source (approximately 3 x 10(13) cm-2). The fractional abundance of ketene is comparable to the predictions of ion-molecule chemistry, while that of thioformaldehyde in TMC-1 is one to two orders of magnitude greater than that expected from such models at steady state. Interstellar sulfur chemistry thus continues to be poorly understood. We set upper limits for the column densities of formic acid (HCOOH), vinyl alcohol (CH2CHOH), methyl formate (HCO2CH3), formamide (NH2CHO), methyl mercaptan (CH3SH), isothiocyanic acid (HNCS), and thioketene (H2C2S) in both sources.  相似文献   
33.
34.
The biological pump is a central process in the ocean carbon cycle, and is a key factor controlling atmospheric carbon dioxide (CO2). However, whether the Arctic biological pump is enhanced or reduced by the recent loss of sea ice is still unclear. We examined if the effect was dependent on ocean circulation. Melting of sea ice can both enhance and reduce the biological pump in the Arctic Ocean, depending on ocean circulation. The biological pump is reduced within the Beaufort Gyre in the Canada Basin because freshwater accumulation within the gyre limits nutrient supply from deep layers and shelves hence inhibits the growth of large-bodied phytoplankton. Conversely, the biological pump is enhanced outside the Beaufort Gyre in the western Arctic Ocean because of nutrient supply from shelves and greater light penetration, enhancing photosynthesis, caused by the sea ice loss. The biological pump could also be enhanced by sea ice loss in the Eurasian Basin, where uplifted isohaline surfaces associated with the Transpolar Drift supply nutrients upwards from deep layers. New data on nitrate uptake rates are consistent with the pattern of enhancement and reduction of the Arctic biological pump. Our estimates indicate that the enhanced biological pump can be as large as that in other oceans when the sea ice disappears. Contrary to a recent conclusion based on data from the Canada Basin alone, our study suggests that the biological CO2 drawdown is important for the Arctic Ocean carbon sink under ice-free conditions.  相似文献   
35.
36.
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than  1015 g cm−3  . The maximum baryon mass of the magnetized stars with axis ratio   q ∼ 0.7  increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.  相似文献   
37.
During the summer of 2010 ice concentration in the Eurasian Basin, Arctic Ocean was unusually low. This study examines the sea-ice reduction in the Eurasian Basin using ice-based autonomous buoy systems that collect temperature and salinity of seawater under the ice along the course of buoy drift. An array of GPS drifters was deployed with 10 miles radius around an ice-based profiler, enabling the quantitative discussion for mechanical ice divergence/convergence and its contribution to the sea-ice reduction. Oceanic heat fluxes to the ice estimated using buoy motion and mixed-layer (ML) temperature suggest significant spatial difference between fluxes under first-year and multi-year ice. In the former, the ML temperature reached 0.6 K above freezing temperature, providing >60–70 W m?2 of heat flux to the overlying ice, equivalent to about 1.5 m of ice melt over three months. In contrast, the multiyear ice region indicates nearly 40 W m?2 at most and cumulatively produced 0.8 m ice melt. The ice concentration was found to be reduced in association with an extensive low pressure system that persisted over the central Eurasian Basin. SSM/I indicates that ice concentration was reduced by 30–40% while the low pressure persisted. The low ice concentration persisted for 30 days even after the low dissipated. It appears that the wind-forced ice divergence led to enhanced absorption of incident solar energy in the expanded areas of open water and thus to increased ice melt.  相似文献   
38.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
39.
40.
We examined whether replantation of benthic microalgae (BMA) can remediate shallow organically enriched sediment. Nitzschia sp., the dominant species in the tested area (Hiroshima Bay, Japan), was isolated and mass cultured, then replanted in the same area. Changes in the condition of the sediment were monitored for five months. During the study period, we observed an increase in redox potential (ORP) and a decrease in acid-volatile sulfide (AVS) in the experimental area, indicating that the sediment condition changed from reduced to oxic. Organic matter in the sediment, represented by chemical oxygen demand (COD), ignition loss (IL) and organic nitrogen (ON) decreased significantly, while inorganic nutrients (ammonia and phosphate) increased in the interstitial water. These changes imply that oxygen produced by the replanted BMA may have enhanced aerobic bacterial activity, accelerating the decomposition of organic matter. Thus, replantation of BMA shows potential as a novel and promising "phytoremediation" method for organically enriched sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号