首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   11篇
  国内免费   1篇
大气科学   6篇
地球物理   22篇
地质学   47篇
海洋学   17篇
天文学   14篇
综合类   1篇
自然地理   8篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   6篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1969年   1篇
  1943年   2篇
  1940年   1篇
排序方式: 共有115条查询结果,搜索用时 156 毫秒
11.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
12.
13.
A global atmosphere–ocean model has been forced with topographic and orbital scenarios in order to evaluate the relative role of both factors for the past climate of East Africa. Forcing the model with a significantly reduced topography in Eastern and Southern Africa leads to a distinct increase in moisture transport from the Indian Ocean into the eastern part of the continent and increased precipitation in Eastern Africa. Simulations with step-wise reduced height show that this climate change occurs continuously with the change in topography, i.e., an abrupt change of local climatic features with a critical height is not found. Simulations of the last interglacial (at 125,000 years before present, i.e., the Eemian interglacial) and the last glacial inception (at 115,000 years before present) are used as examples for the role of orbital-induced changes in insolation. Here, changes in meridional temperature gradients lead to modifications in moisture transport of similar order of magnitude, but with different spatial and seasonal structure. For the Eemian interglacial, a distinct increase in summer moisture transport from the Atlantic deep into the continent at around 20°N is simulated.  相似文献   
14.
A detailed photometric comparison between a Mgii K filterheliogram and a nearly simultaneous Caii K spectroheliogram is presented. The comparison shows a close correspondence in both location and intensity of the bright features on the Sun with a correlation coefficient of 0.92 ± 0.02 between the Mgii and the Caii intensities in active regions.A small flare is most likely observed in the Mgii heliogram giving a substantial contribution to the recorded intensity.We also estimate theoretically the heights in the solar atmosphere at which the Mgii K and Caii K lines are formed. Taking into account the general shape of the line profiles and the different passbands used in the recordings we arrive at an average height of formation of 1700–1900 km above the photosphere for these particular heliograms.  相似文献   
15.
We present one millennium-long (1171-year), and three 100 year long annually resolved δ13C tree-ring chronologies from ecologically varying Juniperus stands in the Karakorum Mountains (northern Pakistan), and evaluate their response to climatic and atmospheric CO2 changes. All δ13C records show a gradual decrease since the beginning of the 19th century, which is commonly associated with a depletion of atmospheric δ13C due to fossil fuel burning. Climate calibration of high-frequency δ13C variations indicates a pronounced summer temperature signal for all sites. The low-frequency component of the same records, however, deviates from long-term temperature trends, even after correction for changes in anthropogenic CO2. We hypothesize that these high-elevation trees show a response to both climate and elevated atmospheric CO2 concentration and the latter might explain the offset with target temperature data. We applied several corrections to tree-ring δ13C records, considering a range of potential CO2 discrimination changes over the past 150 years and calculated the goodness of fit with the target via calibration/verification tests (R2, residual trend, and Durbin-Watson statistics). These tests revealed that at our sites, carbon isotope fixation on longer timescales is affected by increasing atmospheric CO2 concentrations at a discrimination rate of about 0.012‰/ppmv. Although this statistically derived value may be site related, our findings have implications for the interpretation of any long-term trends in climate reconstructions using tree-ring δ13C, as we demonstrate with our millennium-long δ13C Karakorum record. While we find indications for warmth during the Medieval Warm Period (higher than today’s mean summer temperature), we also show that the low-frequency temperature pattern critically depends on the correction applied. Patterns of long-term climate variation, including the Medieval Warm Period, the Little Ice Age, and 20th century warmth are most similar to existing evidence when a strong influence of increased atmospheric CO2 on plant physiology is assumed.  相似文献   
16.
Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties.We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration.We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.  相似文献   
17.
18.
Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.  相似文献   
19.
20.
Xenotime overgrowths on detrital zircon in siliciclastic sediments have been reported in numerous studies. However, in natural samples, solid solution of zircon and xenotime is limited to near-end-member compositions. In order to characterize the interface region between both minerals and to draw inferences on the growth mechanisms of authigenic xenotime, we studied xenotime overgrowths on detrital zircon grains from two Phanerozoic sandstone samples with contrasting post-depositional histories. In one sample, the small (≤10 μm), pyramidal xenotime overgrowths are of diagenetic origin and grew without major discontinuity on the detrital zircon grain. The second sample shows up to >50-μm-wide, porous and inclusion-rich, hydrothermal xenotime overgrowths on detrital zircon, whereas the transition zone between both minerals is accompanied by large pore volume. Chemical compositions of the xenotime precipitates from the two samples differ particularly in Y, REE, Th and Sc concentrations, whereas high MREE availability in the diagenetic sample and the presence of Sc in the hydrothermal sample, respectively, appear to have promoted xenotime growth. Transmission electron microscopy on electron-transparent foils cut from the interface region shows that both the diagenetic xenotime and the hydrothermal xenotime are crystalline and grew in optical and crystallographic continuity to their detrital zircon substrata. Only a narrow transition zone (≤90 nm—diagenetic sample, 200–300 nm—hydrothermal sample) between zircon and xenotime is in part made up of nanometre-scale crystalline domains that are slightly distorted and may have formed from dissolution–re-precipitation processes at the zircon rim along with precipitation from the respective fluid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号