首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   14篇
  国内免费   5篇
测绘学   2篇
大气科学   12篇
地球物理   80篇
地质学   121篇
海洋学   92篇
天文学   57篇
综合类   11篇
自然地理   18篇
  2022年   3篇
  2021年   6篇
  2020年   14篇
  2019年   5篇
  2018年   8篇
  2017年   14篇
  2016年   6篇
  2015年   6篇
  2014年   14篇
  2013年   18篇
  2012年   12篇
  2011年   14篇
  2010年   10篇
  2009年   16篇
  2008年   24篇
  2007年   14篇
  2006年   18篇
  2005年   23篇
  2004年   10篇
  2003年   11篇
  2002年   12篇
  2001年   4篇
  2000年   14篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
111.
Coexisting Na-plagioclases from greenschists both in the thermal aureole of the Kasugamura Granite, Japan, and in the low-P metamorphic zone of Yap Island, western Pacific were analyzed in great detail; the peristerite solvus was determined for each suite. The asymmetric solvus has steep albite-rich and gentle oligoclase-rich limbs that are similar to those for higher pressure series. The present results together with those from Vermont, New Zealand, and the Sanbagawa belt indicate that the peristerite solvus shifts toward the albite component and higher temperature with increasing pressure. With increasing pressure, albite co-existing with oligoclase (An=100 Ca/Ca+ Na=20) varies in composition from An 8–9 (in Kasugamura), through An 3 (in Yap Island and Vermont), to An 1 (in New Zealand) and An less than 0.5 (in the Sanbagawa belt). The consolute temperatures for the peristerite solvus estimated from available geothermometry are 420° C in Kasugamura, 450–550° C in Vermont and 550°–600° C in the Sanbagawa belt. The variation of plagioclase composition in progressive metamorphic zones is explained by intersection of a plagioclase-forming reaction and the peristerite immiscibility gap in an isobaric T-X An diagram. The greenschist zone is characterized by albite, the transition zone by occurrence of peristerite pairs and the amphibolite zone by plagioclase of An 20–50.  相似文献   
112.
Elastic constants of single crystal MgO have been measured by the rectangular parallelepiped resonance (RPR) method at temperatures between 80 and 1,300 K. Elastic constants C ij (Mbar=103 kbar) and their temperature coefficients (kbar/K) are: $$\begin{gathered} {\text{ }}C_{{\text{11}}} {\text{ }}C_{{\text{12}}} {\text{ }}C_{{\text{44}}} {\text{ }}K_s {\text{ }}C_s \hfill \\ C_{ij} {\text{ 300 K 2}}{\text{.966 0}}{\text{.959 1}}{\text{.562 1}}{\text{.628 1}}{\text{.004}} \hfill \\ \partial C_{ij} {\text{/}}\partial T{\text{100 K }} - {\text{0}}{\text{.259 0}}{\text{.013 }} - {\text{0}}{\text{.072 }} - {\text{0}}{\text{.078 }} - {\text{0}}{\text{.136}} \hfill \\ {\text{ 300K }} - {\text{0}}{\text{.596 0}}{\text{.068 }} - {\text{0}}{\text{.122 }} - {\text{0}}{\text{.153 }} - {\text{0}}{\text{.332}} \hfill \\ {\text{ 800 K }} - {\text{0}}{\text{.619 0}}{\text{.009 }} - {\text{0}}{\text{.152 }} - {\text{0}}{\text{.200 }} - {\text{0}}{\text{.314}} \hfill \\ {\text{ 1,300 K }} - {\text{0}}{\text{.598 0}}{\text{.036 }} - {\text{0}}{\text{.130 }} - {\text{0}}{\text{.223 }} - {\text{0}}{\text{.218}} \hfill \\ \end{gathered} $$ By combining the present results with the previous data on the thermal expansivity and specific heat, the thermodynamic properties of magnesium oxide are presented and discussed. The elastic parameters of MgO at very high temperatures in the earth's lower mantle are also clarified.  相似文献   
113.
The space group and hydrogen positions of -(Al0.84Mg0.07Si0.09)OOH are investigated using a single crystal synthesized using a multi-anvil apparatus under conditions of 1000 °C and 21 GPa. The space group determined by single-crystal X-ray diffraction is to Pnn2, with unit-cell parameters of a=4.6975(8) Å, b= 4.2060(6) Å, c=2.8327(4) Å, and V=55.97(1) Å3. Partial occupancy of the Al site by Mg and Si suggests the possibility of a limited solid solution between -AlOOH, stishovite, and a hypothetical CaCl2-type Mg(OH)2 that is 16% denser than brucite. Difference-Fourier maps reveal two small but significant Fourier peaks attributable to hydrogen atoms. Atomic distances and angles around the first peak indicate a hydrogen bond with O···O distances of 2.511 Å, while those around the second peak are suggestive of a bifurcated hydrogen bond with O···O distances of 2.743 and 2.743 Å.  相似文献   
114.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   
115.
We examined how the projected increase in atmospheric CO2 and concomitant shifts in air temperature and precipitation affect water and carbon fluxes in an Asian tropical rainforest, using a combination of field measurements, simplified hydrological and carbon models, and Global Climate Model (GCM) projections. The model links the canopy photosynthetic flux with transpiration via a bulk canopy conductance and semi-empirical models of intercellular CO2 concentration, with the transpiration rate determined from a hydrologic balance model. The primary forcing to the hydrologic model are current and projected rainfall statistics. A main novelty in this analysis is that the effect of increased air temperature on vapor pressure deficit (D) and the effects of shifts in precipitation statistics on net radiation are explicitly considered. The model is validated against field measurements conducted in a tropical rainforest in Sarawak, Malaysia under current climate conditions. On the basis of this model and projected shifts in climatic statistics by GCM, we compute the probability distribution of soil moisture and other hydrologic fluxes. Regardless of projected and computed shifts in soil moisture, radiation and mean air temperature, transpiration was not appreciably altered. Despite increases in atmospheric CO2 concentration (Ca) and unchanged transpiration, canopy photosynthesis does not significantly increase if Ci/Ca is assumed constant independent of D (where Ci is the bulk canopy intercellular CO2 concentration). However, photosynthesis increased by a factor of 1.5 if Ci/Ca decreased linearly with D as derived from Leuning stomatal conductance formulation [R. Leuning. Plant Cell Environ 1995;18:339–55]. How elevated atmospheric CO2 alters the relationship between Ci/Ca and D needs to be further investigated under elevated atmospheric CO2 given its consequence on photosynthesis (and concomitant carbon sink) projections.  相似文献   
116.
Abstract. The Pantingan Gold System (PGS) is a vein-type epithermal prospect exposed within the summit caldera of Mount Mariveles, Bagac, Bataan (Luzon), Philippines. It consists of nine major veins, eight of which trend NW-WNW and distributed in an en echelon array. The eastern tips of these veins appear to terminate near the NE-NNE trending Vein 1, which is located in the easternmost portion of the prospect. Metal assay results on vein and wall rock samples indicate concentrations of 0.01 to 1.1 g/ton Au, trace to 34 g/ton Ag and 0.003 to 0.02 % Cu. Andesite lava flow deposits host the PGS. Potassium-Argon isotopic dating of these andesites yields anarrow age range of 0.88± 0.13 to 1.13 ± 0.17 Ma. The surface exposures of the veins (up to 5 m wide) are encountered at different levels between 590–740 masl. These commonly display a massive texture although banding prominently occurs in Vein 1. The veins consist of gray to cream-colored crystalline and chalcedonic quartz and amorphous silica. Pyrite is the most ubiquitous sulfide mineral. It occurs either as fine-grained disseminations and aggregates in quartz or as infillings in vugs. Calcite, marcasite and bornite are also occasionally noted in the deposit. The prospect shows silicic, argillic, propylitic and advanced argillic alteration zones. Silicic and argillic alterations are confined in the immediate wall rocks of the quartz veins. Argillic alteration grades to a propylitic zone farther away from the veins. The advanced argillic alteration zone, indicated by a suite of acidic clay minerals that include kaolin-ite, dickite, pyrophyllite and alunite, might have been imprinted during the late stages of gold deposition. As a whole, the PGS displays geological and mineralogical features typical of gold mineralization in a low sulfidation, epithermal environment. It is also representative of a young, tectonically undisturbed gold deposit.  相似文献   
117.
Svetlana  Yessalina  Noriyuki  Suzuki  Hiroyuki  Saito 《Island Arc》2006,15(3):292-303
Abstract   The Sagara oil field is located in the Neogene Kakegawa Basin, close to the Izu collision zone at the junction between the main Japanese Islands and the Izu–Bonin Arc. The Sagara oil field is one of the few oil fields situated in a forearc basin on the Pacific side of Japan and is present in a sedimentary basin with poor oil-generating potential. Several crude oils from Sagara oil field were investigated to infer their origin. Organic geochemical characteristics of Sagara oils showed the influences of light biodegradation, migration-contamination, and migration-fractionation. The maturity levels of Sagara oils evaluated based on abundant alkylnaphthalenes corresponded to 0.9–1.2% vitrinite reflectance. Sagara oils were characterized by significant amounts of higher plant biomarkers, a high pristane/phytane ratio and an absence of organic sulphur compounds, suggesting a siliciclastic source rock deposited under nearshore to fluvial–deltaic environments. Numerous faults and fractures in the active forearc basin provided excellent conduits and facilitated upward migration of light hydrocarbons generated at greater depth in the Kakegawa Basin.  相似文献   
118.
S. Suzuki 《Solar physics》1978,57(2):415-422
The projected source positions at 43, 80, and 160 MHz and the sense and degree of circular polarization in the range 24 to 220 MHz, as observed with the Culgoora radioheliograph and spectropolarimeter respectively, are used:
  1. To substantiate the hypothesis that metric U bursts originate in high coronal, magnetic loops.
  2. To strengthen the hypothesis that U-burst radiation is in the ordinary magneto-ionic mode.
The occasional observation of different senses of circular polarization on either side of the turning point of a U burst suggests that U-burst radiation in these cases reaches its limiting polarization at or near the source. This observation raises the same difficulties as those discussed by Melrose (1973) in connection with the bi-polar nature of type-I storm sources.  相似文献   
119.
The brightness distribution of the quiet Sun at 8.6 mm wavelength is synthesized from off-meridian observations using an eight element east-west interferometer with a maximum base line of 16.38 m (1913). The observed brightness distribution is practically flat from the disk center to the optical limb. The effective radius of the nearly uniform component is 1.01 R . If the limb brightening is present, the brightening located between 0.95 R and 1.01 R , and the total flux density of the limb brightening is less than 1% of the total flux density of the Sun. In addition to the nearly uniform component there exists a coronal component just outside the optical limb.  相似文献   
120.
The Miyazaki Plain, eastern part of Kyushu, Japan, is characterized by both significant negative gravity anomalies and aseismic crustal uplifting (1 mm/year) in the Late Pleistocene and Holocene. We examine the relationship between these two phenomena, which may provide important constraints on the interaction between the collision and/or subduction of the Kyushu-Palau Ridge and the forearc. We estimate the mass deficiency below 11-km depth by using the gravity anomalies and P-wave velocity structure of the upper crust. The onset of the load accumulation, 0.5–0.4 Ma, is inferred from the movement of the fluvial terraces considering the tephrochronology. The loading history is assumed to be a linear function of time. We evaluate the crustal rebound by assuming a viscoelastic plate deformation with an underplating load existing at 20- or 30-km depth. The predicted crustal movement for models with a lithospheric (crustal) viscosity of 1023–1024 Pa s can explain the observed altitudes of the shoreline of the marine terraces formed at the Last Interglacial of about 125 kyr BP and the middle Holocene of 5–6 kyr BP. Although we cannot restrict the origin of the buoyant body, the subduction of the Kyushu-Palau Ridge, remnant arc associated with back-arc opening of the Shikoku Basin, may be related to the buoyancy for the uplifting region examined here. On the other hand, the buoyant body off the Miyazaki Plain probably plays an important role in the interaction between the subducting oceanic slab and the overriding forearc crust. Thus, the observed lateral variation of the interplate coupling on the convergent boundary along the Nankai Trough may be attributed to the existence of the buoyant body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号