首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12337篇
  免费   2689篇
  国内免费   2078篇
测绘学   1122篇
大气科学   1386篇
地球物理   3952篇
地质学   6186篇
海洋学   1686篇
天文学   948篇
综合类   669篇
自然地理   1155篇
  2024年   35篇
  2023年   114篇
  2022年   332篇
  2021年   422篇
  2020年   385篇
  2019年   626篇
  2018年   717篇
  2017年   769篇
  2016年   831篇
  2015年   786篇
  2014年   915篇
  2013年   1101篇
  2012年   925篇
  2011年   1015篇
  2010年   944篇
  2009年   843篇
  2008年   884篇
  2007年   781篇
  2006年   702篇
  2005年   574篇
  2004年   454篇
  2003年   443篇
  2002年   494篇
  2001年   460篇
  2000年   366篇
  1999年   215篇
  1998年   114篇
  1997年   108篇
  1996年   81篇
  1995年   92篇
  1994年   53篇
  1993年   56篇
  1992年   49篇
  1991年   45篇
  1990年   33篇
  1989年   26篇
  1988年   20篇
  1987年   30篇
  1986年   20篇
  1985年   18篇
  1984年   29篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   26篇
  1979年   15篇
  1978年   8篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 39 毫秒
51.
The low-temperature heat capacity (C p) of Si-wadeite (K2Si4O9) synthesized with a piston cylinder device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system. The entropy of Si-wadeite at standard temperature and pressure calculated from the measured heat capacity data is 253.8 ± 0.6 J mol−1 K−1, which is considerably larger than some of the previous estimated values. The calculated phase transition boundaries in the system K2O–Al2O3–SiO2 are generally consistent with previous experimental results. Together with our calculated phase boundaries, seven multi-anvil experiments at 1,400 K and 6.0–7.7 GPa suggest that no equilibrium stability field of kalsilite + coesite intervenes between the stability field of sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. First-order approximations were undertaken to calculate the phase diagram in the system K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the calculated diagram compared with previously published versions, suggesting that further experimental or/and calorimetric work is needed to better constrain the low-pressure phase relations of the K2Si4O9 polymorphs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
52.
Understanding of isotopic variations in leaf water is important for reconstruction of paleoclimate and assessment of global biochemical processes. We report here a study of isotopic distributions within a single needle of two pine species, Pinus resinosa Ait and Pinus strobes L., with the objective of understanding how isotopic compositions of leaf water are controlled by environmental and physiological variables. A 2D model was developed to simulate along-leaf isotopic variations and bulk leaf water isotopic compositions. In addition to variables common to all leaf water isotopic models, this 2D model also takes into account the specific geometry and dimensions of pine needles and the isotopic transport in xylem and mesophyll. The model can successfully simulate oxygen isotopic variations along a single needle and averaged over a leaf (bulk leaf water). The simulations suggest that isotopic composition of the bulk leaf water does not always depend only upon the average transpiration rate, which in turn raises questions about using leaf water isotopic values to estimate transpiration rates. An unsuccessful attempt to simulate along-needle hydrogen isotopic variations suggests that certain unknown biological process(es) may not have been incorporated into our 2D model, and if so, it calls for a reevaluation of all other models for hydrogen isotopic simulations of leaf water since they too lack these processes.Existing leaf water isotopic models are reviewed in this work. In particular, we evaluate the most frequently used model, the stomatal boundary layer model (also referred to as the Craig-Gordon model). We point out that discrepancy between the boundary layer model and the measured bulk leaf water seems to depend upon relative humidity. Using our 2D model, we show that this humidity dependency is a result of an interplay between environmental and physiological conditions: if the transpiration rate of plant leaves decreases with increasing relative humidity, our 2D model can reproduce the pattern of isotopic discrepancy between boundary layer model predictions and observations, enabling us to understand better the reason behind this discrepancy.  相似文献   
53.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   
54.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   
55.
56.
中国滑坡预测预报研究综述   总被引:14,自引:1,他引:13  
滑坡预测预报是有效预防滑坡灾害的重要途径之一,这方面的研究不仅受到广泛重视,且硕果累累。将中国滑坡预测预报的研究历史划分为四个阶段:① 经验判断——被动防灾避灾阶段;② 定性——半定量分析预测预报阶段;③ 理论方法探索——检验预测预报阶段;④ 理论方法深化——综合应用预测预报阶段。从监测(观测)方法、预测预报方法,以及研究特点等方面进行简要回顾,总结已有监测方法(手段)、预测预报理论、方法的研究现状,认为尚存在:① 监测方法(手段),包括仪器、设备的精度不足;② 预测预报方法综合性、实用性不强;③ 预测预报专门理论尚待完善等问题。在分析的基础上,提出自己的观点,并进行了发展趋势展望。  相似文献   
57.
人工合成烃类包裹体研究进展   总被引:4,自引:0,他引:4  
陈勇  葛云锦 《地质论评》2008,54(6):807-813
人工合成烃类包裹体不仅可以作为分析仪器校正的标样,还可以增进人们对烃类包裹体形成机制和水—岩作用机理的认识。人工合成包裹体的方法主要有三种:人工晶体生长法、焊封石英管法和金刚石压腔法,其中利用愈合人工石英(水晶)单晶裂隙合成流体包裹体技术已成为标准的合成技术。目前人工合成烃类包裹体主要利用晶体生长法合成,包括高温高压利用石英(或方解石)晶体生长愈合裂缝形成流体包裹体和低温下采用过饱和溶液重结晶形成流体包裹体。由于高温高压条件下烃类可能发生裂解,母液保真是成功实现人工合成烃类包裹体的重要前提条件。国外在人工合成烃类包裹体研究方面已经取得了一些重要的认识,但远不及人工合成无机体系流体包裹体研究那样系统和完善。国内关于人工合成烃类包裹体研究尚处于起步阶段,迫切需要开展这方面的研究工作。  相似文献   
58.
59.
The Monte Carlo method is used to generate parent stochastic discrete fracture network, from which a series of fractured rock samples of different sizes and orientations are extracted. The fracture network combined with a regular grid forms composite element mesh of the fractured rock sample, in which each composite element is composed of sub‐elements incised by fracture segments. The composite element method (CEM) for the seepage is implemented to obtain the nodal hydraulic potential as well as the seepage flow rates through the fractured rock samples. The application of CEM enables a large quantity of stochastic tests for the fractured rock samples because the pre‐process is facilitated greatly. By changing the sizes and orientations of the samples, the analysis of the seepage characteristics is realized to evaluate the variation of the permeability components, the existence of the permeability tensor and the representative element volume. The feasibility and effectiveness are illustrated in a numerical example. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
60.
Biaxial test simulations using a packing of polygonal particles   总被引:1,自引:0,他引:1  
The mechanical response of cohesionless granular materials under monotonic loading is studied by performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense and loose media show that samples achieve the same void ratio at large strains independent of their initial density state. This limit state resembles the so‐called critical state of soil mechanics, except for some stress fluctuations, which remain for large deformations. These fluctuations are studied at the micro‐mechanical level, by following the evolution of the co‐ordination number, force chains and the fraction of the sliding contacts of the sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号