首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   10篇
地球物理   50篇
地质学   61篇
海洋学   29篇
天文学   45篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
191.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
192.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
193.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   
194.
Whale carcasses (whale falls) deposited on the deep seafloor are associated with a distinctive biotic community. A fossil whale bone recovered from São Paulo Ridge, South Atlantic Ocean, during cruise YK13–04 Leg 1 of R/V Yokosuka was covered by a ferromanganese (Fe–Mn) crust approximately 9 mm thick. Here, we report an age constraint for this fossil bone on the basis of Os isotopic stratigraphy (187Os/188Os ratio) of the Fe–Mn crust. Major‐ and trace‐element compositions of the crust are similar to those of Fe–Mn crusts of predominantly hydrogenous origin. Rare earth element concentrations in samples of the crust, normalized with respect to Post‐Archean average Australian Shale, exhibit flat patterns with positive Ce and negative Y anomalies. These results indicate that the Fe–Mn crust consists predominantly of hydrogenous components and that it preserves the Os isotope composition of seawater at the time of its deposition. 187Os/188Os ratios of three Fe–Mn crust samples increased from 0.904 to 1.068 in ascending stratigraphic order. The value of 1.068 from the surface slice (0–3 mm depth in the crust) was identical to that of present‐day seawater within error (~1.06). The value of 0.904 from the basal slice (6–9 mm) equaled seawater values from ca. 4–5 Ma. Because it is unknown how long the bone lay on the seafloor before the Fe–Mn crust was deposited, the Os stratigraphic age of ca. 5 Ma is a minimum age of the fossil. This is the first application, to our knowledge, of marine Os isotope stratigraphy for determining the age of a fossil whale bone. Such data may offer valuable insights into the evolution of the whale‐fall biotic community.  相似文献   
195.
Katagiri  Jun  Kimura  Sho  Noda  Shohei 《Acta Geotechnica》2020,15(8):2195-2203
Acta Geotechnica - This paper is a study of determination of representative elementary volume (REV) size suitable for pore-scale flow simulation (PFS) and evaluation of permeability anisotropy for...  相似文献   
196.
Melt‐origin pseudotachylyte is the most reliable seismogenic fault rock. It is commonly believed that pseudotachylyte generation is rare in the plate subduction zone where interstitial fluids are abundant and can trigger dynamic fault‐weakening mechanisms such as thermal pressurization. Some recent studies, however, have discovered pseudotachylyte‐bearing faults in exhumed ancient accretionary complexes, indicating that frictional melting also occurrs during earthquakes in subduction zones. To clarify the pseudotachylyte generation mechanism and the variation of slip behavior in the plate subduction zone, a pseudotachylyte found in the exhumed fossil accretionary complex (the Shimanto Belt, Nobeoka, Japan) was re‐focused and microscopic and three‐dimensional observations of the pseudotachylyte‐bearing fault were performed based on optical, electron, and X‐ray microscope images. Based on the patterns contained in the fragment, the pseudotachylyte is divided into four domains, although no clear domain boundaries or layering structures are not found. Three‐dimensional observation also suggests that the pseudotachylyte were fragmented or isolated by cataclasite or carbonate breccia. The pseudotachylyte was rather injected into the surrounding carbonate breccia, which is composed of angular fragments of the host rock and a matrix of tiny crystalline carbonate. The pseudotachylyte volume was extracted from the X‐ray microscope image and the heat abundance consumed by the pseudotachylyte generation was estimated at 2.18 MJ/m2, which can be supplied during a slip of approximately 0.5 m. These observations and calculations, together with the results of the previous investigations, suggest hydrofracturing and rapid carbonate precipitation that preceded or accompanied the frictional melting. Dynamic hydrofracturing during a slip can be caused by rapid fluid pressurization, and can induce abrupt decrease in fluid pressure while drastically enhancing the shear strength of the shear zone. Consequently, frictional heating would be reactivated and generate the pseudotachylyte. These deformation processes can explain pseudotachylyte generation in hydrous faults with the impermeable wall rock.  相似文献   
197.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   
198.
This paper presents a passive vertical quasi‐zero‐stiffness vibration isolator intended for relatively small objects. The present isolator has features of compactness, long stroke, and adjustability to various load capabilities. To realize these features, we use constant‐force springs, which sustain constant load regardless of their elongation, and propose a variable ellipse curve mechanism that is inspired by the principle of ellipsographs. The variable ellipse curve mechanism can convert the restoring force of the horizontally placed constant‐force springs to the vertical restoring force of the vibration isolator. At the same time as converting the direction, the vertical restoring force can be adjusted by changing the ratio of the semi‐minor axis to the semi‐major one of the ellipse. In this study, a prototype of a class of quasi‐zero‐stiffness vibration isolator with the proposed variable ellipse curve mechanism is created. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the prototype can reduce the response acceleration within the same specified tolerance even when the mass of the vibration isolated object is changed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
199.
The Nobeoka Thrust, an ancient megasplay fault in the Shimanto Belt, southwestern Japan, contains fault rocks from the seismogenic zone, providing an accessible analog of active megasplay faults in deep subduction settings. In this study, the paleostress along the Nobeoka Thrust was analyzed using multiple inversion techniques, including k‐means clustering of fault datasets acquired from drillcores that intersected the thrust. The six resultant stress orientation clusters can be divided into two general groups: stress solutions with north–south‐trending σ1 axes, and those with east–west‐trending σ1 axes. These groups are characterized by the temporal changes for the orientations of the σ1 and σ3 principal stress axes that involve alternation between horizontal and vertical. The findings are probably due to a change in stress state before and after earthquakes that occurred on the fault; similar changes have been observed in active tectonic settings, such as the 2011 Tohoku‐Oki earthquake (Japan).  相似文献   
200.
Identification and characterization of small extraterrestrial samples, such as small Antarctic meteorites <~1 cm, require the development of convenient laboratory‐based nondestructive analytical techniques using X‐ray diffraction (XRD). We explore the characterization criteria using an X‐ray diffractometer with a Gandolfi attachment using sub‐mm small fragments and powder aggregates for various kinds of stony meteorites and develop a new analytical technique. We primarily focus on olivine and pyroxene because they are the most abundant and important minerals for stony meteorite classification. A new calibration is performed to estimate the FeO content of the olivine in unequilibrated ordinary chondrites, which is useful for determining the meteorite chemical group irrespective of powder aggregate diameter but dependent on fragment grain diameter. This is because X‐ray intensity absorption is more effective for grains than for powders. Clinoenstatite (Cen) and orthoenstatite (Oen) were distinguished using the presence or absence of the isolated Oen 511 index peak. The method is also applied to other stony meteorites including carbonaceous chondrites and achondrites. The XRD results are consistent with studies based on polished sections involving textural observations by scanning microscope and chemical compositions of the constituent minerals. The new measurement technique presented here is convenient because of its use in air by the laboratory‐based X‐ray diffractometer, which makes it useful for the initial analyses of restricted extraterrestrial sample characterization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号