首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   4篇
  国内免费   1篇
大气科学   9篇
地球物理   17篇
地质学   32篇
海洋学   15篇
天文学   20篇
自然地理   3篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有96条查询结果,搜索用时 171 毫秒
31.
The abundance and morphology of microdiamond in dolomite marble from Kumdy‐kol in the Kokchetav Massif, are unusual; a previous study estimated the maximum content of diamonds in dolomite marble to be about 2700 carat ton?1. Microdiamond is included primarily in garnet, and occasionally in diopside and phlogopite pseudomorphs after garnet. They are classified into three types on the basis of their morphology: (1) S‐type: star‐shaped diamond consisting of translucent cores and transparent subhedral to euhedral very fine‐grained outer parts; (2) R‐type: translucent crystals with rugged surfaces; and (3) T‐type: transparent, very fine‐grained crystals. The S‐type is the most abundant. Micro‐Laue diffraction using a 1.6‐µm X‐ray beam‐size demonstrated that the cores of the star‐shaped microdiamond represent single crystals. In contrast, the most fine‐grained outer parts usually have different orientations compared to the core. Laser–Raman studies indicate that the FWHM (Full Width at Half Maximum) of the Raman band of the core of the S‐type diamond is slightly larger than that for the outer parts. Differences in morphology, crystal orientations, and in the FWHM of the Raman band between the core and the fine‐grained outer‐parts of S‐type microdiamond suggest that the star‐shaped microdiamond was formed discontinuously in two distinct stages.  相似文献   
32.
Extremely strong ionized Fe emission lines, with equivalent widths reaching ∼4000 eV, were discovered by ASCA from a few Galactic compact objects, including AX J2315−0592, RX J1802.1+1804 and AX J1842.8−0423. These objects are thought to be binary systems containing magnetized white dwarfs (WDs). A possible interpretation of the strong Fe K line is the line-photon collimation in the WD accretion column, as a result of resonance scattering of line photons. The collimation occurs when the accretion column has a flat shape, and the effect is augmented by the vertical velocity gradient, which reduces the resonant trapping of resonant photons along the magnetic field lines. This effect was quantitatively confirmed with Monte Carlo simulations. Furthermore, with ASCA observations of the polar V834 Centauri, this collimation effect was clearly detected as a rotational modulation of the equivalent width of the Fe K emission line. The extremely strong emission lines mentioned above can be explained consistently by our interpretation. Combining this effect with other X-ray information, the geometry and plasma parameters in the accretion column were determined.  相似文献   
33.
Snow is an important component of the Earth's climate system and is particularly vulnerable to global warming. It has been suggested that warmer temperatures may cause significant declines in snow water content and snow cover duration. In this study, snowfall and snowmelt were projected by means of a regional climate model that was coupled to a physically based snow model over Shasta Dam watershed to assess changes in snow water content and snow cover duration during the 21st century. This physically based snow model requires both physical data and future climate projections. These physical data include topography, soils, vegetation, and land use/land cover, which were collected from associated organizations. The future climate projections were dynamically downscaled by means of the regional climate model under 4 emission scenarios simulated by 2 general circulation models (fifth‐generation of the ECHAM general circulation model and the third‐generation atmospheric general circulation model). The downscaled future projections were bias corrected before projecting snowfall and snowmelt processes over Shasta Dam watershed during 2010–2099. This study's results agree with those of previous studies that projected snow water equivalent is decreasing by 50–80% whereas the fraction of precipitation falling as snowfall is decreasing by 15% to 20%. The obtained projection results show that future snow water content will change in both time and space. Furthermore, the results confirm that physical data such as topography, land cover, and atmospheric–hydrologic data are instrumental in the studies on the impact of climate change on the water resources of a region.  相似文献   
34.
35.
The Cabog Formation, newly established herein and exposed in central East Luzon, Philippine Mobile Belt, is defined in age by the occurrence of radiolarians. The radiolarian assemblage is correlative with the middle Eocene and suggests a low paleolatitude affinity. The correlation, sedimentary environment, and the tectonic significance are discussed. The Cabog Formation is correlative with the distal part of the middle–late Eocene Caraballo Formation, which is exposed in the northeastern side of the Philippine Fault Zone. The sandstone composition and radiolarian age suggest that the Cabog Formation represents the first depositional stage in the early arc setting. The northward migration of the formation is also estimated in relation with the Philippine Sea Plate motion along the Older Philippine Fault from the equatorial area.  相似文献   
36.
The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131‐index required for the thermometer, which is the difference in X‐ray diffraction peak positions between the 131 and 11 reflections of plagioclase, was obtained by a high‐resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring‐8. Crystallization temperatures were successfully determined from the Δ131‐indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.  相似文献   
37.
We simulated two models of classical Cepheids with the same effective temperature and luminosity but different masses. Neither model has significant resonance among linear nonadiabatic periods of the fundamental, the first overtone, and the second overtone radial modes. The higher mass model found to approach to the second overtone-only state. The lower mass model shows a complicated three-mode interaction and none of the amplitudes of three modes is negligible. The relation of the higher mass model to the shortest period Cepheid HR 7308, and that of the lower mass model to the double-mode Cepheids are discussed. It appears that three-mode nonresonant coupling should be considered to explain the behaviours of both models.  相似文献   
38.
Amplitude equations, that are used in the investigation of stellar pulsations, for the three-mode nonresonant coupling case are inferred from that of the two-mode nonresonant coupling case. Characteristics of the fixed points of the amplitude equations are studied. Chaotic behaviour is expected when the amplitude equations consist of more than two modes.  相似文献   
39.
A criterion for the occurrence of double-mode pulsations is derived from linear adiabatic coupling coefficients The criterion indicates that double-mode pulsations of classical Cepheids occur at a shorter period range than the observed one, and that the evolutionary mass models are preferable for the double-mode pulsations.  相似文献   
40.
The response of phytoplankton to the Beaufort shelf-break eddies in the western Arctic Ocean is examined using the eddy-resolving coupled sea ice–ocean model including a lower-trophic marine ecosystem formulation. The regional model driven by the reanalysis 2003 atmospheric forcing from March to November captures the major spatial and temporal features of phytoplankton bloom following summertime sea ice retreat in the shallow Chukchi shelf and Barrow Canyon. The shelf-break warm eddies spawned north of the Barrow Canyon initially transport the Chukchi shelf water with high primary productivity toward the Canada Basin interior. In the eddy-developing period, the anti-cyclonic rotational flow along the outer edge of each eddy moving offshore occasionally traps the shelf water. The primary production inside the warm eddies is maintained by internal dynamics in the eddy-maturity period. In particular, the surface central area of an anti-cyclonic eddy acquires adequate light, nutrient, and warm environment for photosynthetic activity partly attributed to turbulent mixing with underlying nutrient-rich water. The simulated biogeochemical properties with the dominance of small-size phytoplankton inside the warm eddies are consistent with the observational findings in the western Arctic Ocean. It is also suggested that the light limitation before autumn sea ice freezing shuts down the primary production in the shelf-break eddies in spite of nutrient recovery. These results indicate that the time lag between the phytoplankton bloom in the shelf region following the summertime sea ice retreat and the eddy generation along the Beaufort shelf break is an important index to determine biological regimes in the Canada Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号