首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   2篇
  国内免费   5篇
测绘学   1篇
大气科学   12篇
地球物理   39篇
地质学   44篇
海洋学   39篇
天文学   39篇
自然地理   20篇
  2022年   2篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   9篇
  2003年   11篇
  2002年   7篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有194条查询结果,搜索用时 31 毫秒
71.
Astrophysics and Space Science - Electrostatic (ES) waves generated in space plasmas, e.g., Langmuir and ion-acoustic waves, are subject to multiple applications, such as plasma diagnosis,...  相似文献   
72.
73.
Iapetus, one of the saturnian moons, has an extreme albedo contrast between the leading and trailing hemispheres. The origin of this albedo dichotomy has led to several hypotheses, however it remains controversial. To clarify the origin of the dichotomy, the key approach is to investigate the detailed distribution of the dark material. Recent studies of impact craters and surface temperature from Cassini spacecraft data implied that sublimation of H2O ice can occur on Iapetus’ surface. This ice sublimation can change the albedo distribution on the moon with time.In this study, we evaluate the effect of ice sublimation and simulate the temporal change of surface albedo. We assume the dark material and the bright ice on the surface to be uniformly mixed with a certain volume fraction, and the initial albedo distribution to incorporate the dark material deposits on the surface. That is, the albedo at the apex is lowest and concentrically increases in a sinusoidal pattern. This situation simulates that dark materials existed around the Iapetus’ orbit billions of years ago, and the synchronously rotating Iapetus swept the material and then deposited it on its surface. The evolution of the surface albedo during 4.0 Gyr is simulated by estimating the surface temperature from the insolation energy on Iapetus including the effect of Saturn’s eccentricity and Iapetus’ obliquity precession, and evaluating the sublimation rate of H2O ice from the Iapetus’ surface.As a result, we found that the distribution of the surface albedo changed dramatically after 4.0 Gyr of evolution. The sublimation has three important effects on the resultant surface albedo. First, the albedo in the leading hemisphere has significantly decreased to approach the minimum value. Second, the albedo distribution has been elongated along the equator. Third, the edge of the low albedo region has become clear. Considering the effect of ice sublimation, the current albedo distribution can be reconstructed from the sinusoidal albedo distribution, suggesting the apex-antapex cratering asymmetry as a candidate for the origin of the albedo dichotomy. From the model analysis, we obtained an important aspect that the depth of the turn-over layer where the darkening process proceeded for 4 Gyr should be an order of 10 cm, which is consistent with evaluation from the Cassini radar observations.  相似文献   
74.
In this work, we first establish a simple procedure to obtain with 11-figure accuracy the values of Chandrasekhar’s H-function for isotropic scattering using a closed-form integral representation and the Gauss-Legendre quadrature. Based on the numerical values of the function produced by this method for various combinations of ? 0, the single scattering albedo, and μ, the cosine of the zenith angle θ of the direction of radiation emergent from or incident upon a semi-infinite scattering-absorbing medium, we propose a rational approximation formula with μ 1/4 and \(\sqrt{1-\varpi_{0}}\) as the independent variables. This allows us to reproduce the correct values of H(? 0,μ) within a relative error of 2.1×10?5 without recourse to any iterative procedure or root-finding process.  相似文献   
75.
Tsutomu  Nakazawa  Katsumi  Ueno    Xiangdong  Wang 《Island Arc》2009,18(1):94-107
Huge carbonate rock bodies ranging in age from the Visean (Middle Mississippian/Early Carboniferous) to the Changhsingian (Lopingian/Late Permian) overlie a basaltic basement in the Changning–Menglian Belt, West Yunnan, Southwest China. These carbonates lack intercalations of terrigenous siliciclastic material throughout. These lines of evidence indicate that they formed upon an isolated and continuously subsiding mid-oceanic island (or plateau), probably of hotspot origin. The carbonates are grouped into a shallow-water carbonate platform facies regime observed in the Yutangzhai section and a relatively deep-water carbonate slope facies regime typically represented in the Longdong section. These two facies regimes developed contemporaneously as parts of a carbonate depositional system on and around a mid-oceanic volcanic edifice. The carbonate platform is subdivided into four facies, including platform-margin, shoal, lagoon, and peritidal facies. Along the measured Yutangzhai section of the platform facies regime, the vertical facies succession from the platform-margin facies into inner-platform facies such as the shoal and lagoon facies is recognized. This facies succession is explained as resulting from the progradation of the carbonate platform. Worm tubes occur as a main reef builder in platform-margin facies of the Mississippian. Their occurrence as major constituents in a high-wave-energy reef is peculiar to Carboniferous reef distributions of the world. The occurrences of other reef- and/or mound-building organisms and peritidal dolo-mudstone are almost consistent in timing with those of Panthalassan counterparts such as the Akiyoshi and Omi limestones of Japan, and probably exhibit the worldwide trend.  相似文献   
76.
Mooring and hydrographic observations were conducted from September 2012 to May 2014 at the mouth of Otsuchi Bay, a ria along the Pacific coast of Japan. Our observations quantitatively demonstrated that the circulation and the water properties of Otsuchi Bay are strongly influenced by the Tsugaru Warm Current (TWC) and Oyashio Current (OY) at seasonal and subseasonal time scales. Two bottom-mounted velocity profilers and temperature and salinity measurements beneath the near-surface halocline showed a counterclockwise lateral circulation pattern related to the TWC, which was enhanced from summer to autumn. From winter to early spring, the lateral circulation patterns related to the TWC weakened and the influence of the OY occasionally increased. When the OY was weak, surface flows became an overturning structure, with outflows in the upper layer and inflows in the lower layer. When the OY was strong and passed close to the Sanriku coast, the circulation became highly variable and intermittent. Intrusions of the markedly low-salinity OY water were observed on two occasions and persisted for periods of several weeks to several months. Salinity was sometimes less than 33.7, the lower limit of the typical TWC from late summer to autumn even when the TWC dominates. We suggested that this is the seasonal fluctuations of the TWC itself, as the upstream current of the Tsushima Warm Current is freshened in summer as a result of the influence of the Changjiang River. The surface water was generally fresher in the south of the bay than in the north, suggesting the Coriolis deflection of the river plume.  相似文献   
77.
This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings (1) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (2) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal–mechanically induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal–mechanically induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal–mechanically induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.  相似文献   
78.
Partial pressure of CO2 in surface sea water (pCO2) was measured continuously off Sanriku in May, 1997 by a new pCO2 measurement system. We have examined the relation of pCO2 to physical factors such as temperature, salinity and density, chemical and biological factors such as nutrients and carbonate system and chlorophylla. In the Kuroshio region pCO2 was not correlated to physical, chemical and biological factors in the range of 260 to 290 μatom. In transition water (Tr1) between Kuroshio and the Oyashio second branch, pCO2 was weakly correlated to physical factors and strongly correlated to nutrients. In transition water (Tr2) between the Oyashio first and second branches, pCO2 was highly correlated to temperature (SD: 10.9 μatom) and salinity (SD: 8.6 μatom) and also to nutrients. In transition water (Tr1+Tr2), pCO2 was highly multivariately correlated to temperature (T), salinity (S), chlorophylla (CH) (or nitrate+nitrite (N)) as follows, pCO2(μatom)= 10.8×T(°C)+27.7×S+2.57CH(μg/1) −769, R2= 0.86, SD = 20.9, or pCO2(μatom)= 3.9×T(°C)+25.5×S+16.0NO3(μM) −686, R2= 0.99, SD = 6.4. Moreover, pCO2 was predicted by only two factors, one physical (S) and the other chemical/biological (N) as follows: pCO2 (μatom)=32.8×S+19.4N−908, R2=0.97, SD=8.4. The pH measured at 25°C was well correlated with normalized pCO2 at a fixed temperature. In the Oyashio region pCO2 was decreased to 160 μatom, probably because of spring bloom, but was not correlated linearly to chlorophylla. The results obtained showed the possibility of estimating pCO2 of the Oyashio and transition regions in May by satellite remote sensing of SST, but the problem of estimation of pCO2 in Kuroshio water remains to be solved.  相似文献   
79.
In order to examine temporal variations of the surface oceanic and atmospheric fCO2 and the DIC concentration, we analyzed air and seawater samples collected during the period May 1992–June 1996 in the northwestern North Pacific, about 30 km off the coast of the main island of Japan. The atmospheric CO2 concentration has increased secularly at a rate of 1.9 ppmv yr−1, and it showed a clear seasonal cycle with a maximum in spring and a minimum late in summer, produced mainly by seasonally-dependent terrestrial biospheric activities. DIC also showed a prominent seasonal cycle in the surface ocean; the minimum and maximum values of the cycle appeared in early fall and in early spring, respectively, due primarily to the seasonally-dependent activities of marine biota and partly to the vertical mixing of seawater and the coastal upwelling. The oceanic fCO2 values were almost always lower than those of the atmospheric fCO2, suggesting that this area of the ocean acts as a sink for atmospheric CO2. Values varied seasonally, mainly reflecting seasonal changes of SST and DIC, with a secular increase at a rate of 3.7 μatm yr−1. The average values of the annual net CO2 flux between the ocean and the atmosphere calculated by using the different bulk equations ranged between −0.8 and −1.7 mol m−2yr−1, and its magnitude was enhanced and reduced late in spring and mid-summer, respectively, due mainly to the seasonally varying oceanic fCO2.  相似文献   
80.
In this article we describe the basic framework of the computerized geologic mapping system cigma. The system, whic is based on a mathematical formulation of geologic concepts, consists of the following six subsystems: (1) input of geologic data set; (2) inference of stratigraphic sequence; (3) construction of logical models of geologic structures; (4) determination of three-dimensional geologic boundary surfaces; (5) construction of three-dimensional solid model of geologic structures; and (6) graphical presentation. Geologic structures are summarized in several tables called logical models of geologic structures. Each model is constructed automatically from input data on structural relations between geologic bodies. The model interprets the data automatically to create data files necessary to determine the shapes of geologic boundaries; it also provides a threedimensional solid model of geologic structures referring to the shapes of boundaries. As a prototype, we introduce two types of contacts corresponding to conformity and unconformity into the logical model and show that it is possible to draw a geologic map automatically. More complex geologic structures can be introduced into the geologic mapping system through further formulation of geologic structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号