首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   7篇
  国内免费   10篇
测绘学   2篇
大气科学   19篇
地球物理   80篇
地质学   77篇
海洋学   79篇
天文学   36篇
综合类   4篇
自然地理   26篇
  2023年   2篇
  2021年   3篇
  2020年   3篇
  2018年   4篇
  2017年   7篇
  2016年   14篇
  2015年   7篇
  2014年   14篇
  2013年   19篇
  2012年   11篇
  2011年   16篇
  2010年   12篇
  2009年   20篇
  2008年   11篇
  2007年   14篇
  2006年   18篇
  2005年   16篇
  2004年   9篇
  2003年   14篇
  2002年   5篇
  2001年   12篇
  2000年   5篇
  1999年   7篇
  1998年   11篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1961年   1篇
  1958年   1篇
  1937年   1篇
排序方式: 共有323条查询结果,搜索用时 156 毫秒
141.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
142.
143.
144.
The transport and vertical structure of the Antarctic Circumpolar Current (ACC) are examined, especially the component of the current driven by buoyancy, by using a three-layer model. We investigate the effects of the South American peninsula, the island arc to the east, and the Macquarie ridge, which are modeled as partial meridional barriers overlapping meridionally each other. We found that the buoyancy-driven component is given as a function of the transport out of the Weddell Sea (S W ) and the sum of the transports into the North Atlantic (S A ) and the North Pacific (S P ) out of the Southern Ocean. The buoyancy-driven current flows westward, ifS W andS A +S P are positive. The transport depends on the value ofS W more thanS A +S P by one order of magnitude within a realistic range of parameters. The most predominant term in the transport equation is inversely proportional to the difference between the Coriolis parameters at the tips of the partial meridional barriers. Thus, the magnitude of the transport strongly depends on the overlapping length of the meridional barriers. The eastward current of the ACC is driven by the predominant eastward wind stress in the Southern Ocean, although a part of the wind-driven component is canceled by the westward buoyancy-driven component. The vertical structure of the ACC is found to be attributed to the surface wind-driven circulation and the deep and bottom buoyancy-driven circulation.  相似文献   
145.
The first CO2 exposure experiments on several species of pelagic copepods inhabiting surface and deep layers in the western North Pacific were conducted. Living organisms were collected from two layers between the surface and 1,500 m between latitudes of 11 and 44°N, and they were exposed aboard ship to various pCO2 up to about 98,000 μatm. Mortality of copepods from both shallow and deep layers in subarctic to subtropical regions increased with increasing pCO2 and exposure time. Deep-living copepods showed higher tolerance to pCO2 than shallow-living copepods. Furthermore, deep-living copepods from subarctic and transitional regions had higher tolerances than the subtropical copepods. The higher tolerances of the deep-living copepods from subarctic and transitional regions may be due to the adaptation to the natural pCO2 conditions in the subarctic ocean.  相似文献   
146.
As part of the research program WEST-COSMIC Phase I (1997–2001), vertical profiles down to the greater depths (0–2000 m or 5800 m) of the plankton community structure composed of heterotrophic bacteria, phytoplankton, protozooplankton and metazooplankton were studied at one station in each subarctic (44°N) and in transitional region (39°N), and two stations in subtropical region (30°N and 25°N); all in 137–155°E in the western North Pacific Ocean. The biomass of all four taxonomic groups decreased rapidly with increasing depths at all stations, although the magnitude of depth-related decrease differed among the groups. As plankton community structure, metazooplankton biomass and bacterial biomass occupied >50% of the total in 0–2000 and 2000–4000 or 5000 m strata, respectively, at subarctic and transitional stations, while bacterial biomass contributed to >50% of the total consistently from 0 through 4800 or 5800 m at subtropical stations. Metazooplankton biomass integrated over the greater depths exhibited a clear latitudinal pattern (high north and low south), but this was not the case for those of the other taxonomic groups. As a component of metazooplankton, an appreciable contribution of diapausing copepods to the metazooplankton was noted at subarctic and transitional stations, but they were few or nil at subtropical stations. As protozooplankton assemblages, heterotrophic microflagellates (HMF) and dinoflagellates were two major components at subarctic and transitional stations, but were only HMF predominated at subtropical stations. From biomass ratios between heterotrophic bacteria, HMF and dinoflagellates, “sinking POC-DOC-heterotrophic bacteria-HMF-heterotrophic dinoflagellates” link was proposed as a microbial food chain operative in the deep layer of the western North Pacific. All results are discussed in the light of latitudinal differences in the structure and functioning of plankton community contributing to the ‘biological pump’ in the western North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
147.
The free oscillation of water in a rotating rectangular basin of variable depth is discussed. The depth is assumed to decrease from the center to the edges according to a paraboloidal law. The solution is obtained in terms of double series of zonal harmonics. Numerical solutions were worked out. Complete sets of modes will be evaluated by an electronic computer.  相似文献   
148.
We describe the day–night vertical distribution patterns of 18 species or types of myctophid fish larvae at the transforming stage based on discrete depth sampling from the surface down to 1000-m depth in the subtropical–tropical western North Pacific. A total of 551 transforming stage larvae were collected at the 19 sampling stations. Except for the Diaphus species and Notolychnus valdiviae, all of the transforming stage larvae (including genera Benthosema, Bolinichthys, Centrobranchus, Ceratoscopelus, Diogenichthys, Hygophum, Lampanyctus, Lobianchia, Myctophum, Symbolophorus, and Triphoturus) were collected in the lower mesopelagic zone from 600- to 900-m depth during both day and night, showing no diel vertical migration (DVM). On the contrary, the Diaphus species and N. valdiviae larvae undergo DVM during the transforming stage, occurring below 200-m layer during the daytime and migrating up to the upper 150-m layer at night, i.e., they show earlier adaptation to juvenile–adult behaviors. Most myctophid fish larvae are known to undertake substantial ontogenetic vertical migration (OVM) from the epipelagic to mesopelagic zones during their early life stage. Although considerable sampling effort was carried out in this study, transforming larvae, except for the above two migratory ones, were not collected in the epipelagic and upper mesopelagic zones, strongly suggesting that their sinking speed would be high. It would be advantageous for survival to spend their highly vulnerable transforming stage in the lower mesopelagic zone, where predation pressures are lower and physical conditions are more stable than in the upper layers.  相似文献   
149.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号