首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   15篇
  国内免费   3篇
测绘学   3篇
大气科学   10篇
地球物理   62篇
地质学   71篇
海洋学   35篇
天文学   47篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   10篇
  2016年   6篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   9篇
  2010年   7篇
  2009年   15篇
  2008年   13篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有233条查询结果,搜索用时 15 毫秒
131.
Using an X‐ray diffractometer, powder‐like diffraction patterns were acquired from in‐plane rotation of polished thin sections (PTSs) of 60 ordinary chondrites (23 H, 21 L, and 16 LL), in order to explore the thermal and shock metamorphism and its modifications of primordial features. The olivine (Ol) 130 peak position shown as Bragg indices clearly correlates with the chemical group for equilibrated ordinary chondrites (EOCs), while the peak is split or broad for unequilibrated ordinary chondrites (UOCs). The intensity ratio of kamacite may be useful for distinguishing the chemical group between H and L‐LL, but it is not definite because of heterogeneous terrestrial weathering of kamacite, especially in H chondrites. The summed intensities of the orthoenstatite (Oen) 511 and 421 peaks positively correlates with the metamorphic sequence from 3 to 6, while that of clinoenstatite (Cen) 22 is inversely correlated. The shock stage positively correlates with the summed full width of half maximum values of the Oen 511 and 421 peaks and the FWHM of Ol 130 peak for each class. Significant amount of Oen (Pbca) transformed through Cen (C2/c) finally to Cen (P21/c) is stable at high pressure for shock stage S6 (Tenham and NWA 4719). The shock melted LL chondrite is characterized by the occurrence of Cen and abundant homogeneous olivine. The effects of both thermal and shock metamorphism are thus incorporated into the bulk X‐ray diffraction (XRD) data. The bulk XRD method is useful for determining the bulk mineralogy, resulting in the classification of ordinary chondrites. The method is also applicable to samples other than PTS.  相似文献   
132.
Stratigraphic and geochronological data show that the late Cenozoic Ueno Basalts and related Nomugi-Toge and Hida volcanic suites of the Norikura Volcanic Chain, Japan, were active for ~ 1 million years. Temporal and spatial variations of the volcanic activity and chemistry of the volcanic products suggest that it was induced by a common mantle diapir. The Ueno Basalts are small monogenetic volcanoes scattered over an area 50 km in diameter, and comprise a small volcanic province. The Ueno Basalts are almost all subalkalic basalt to basaltic andesite, erupted through the late Pliocene to the earliest Pleistocene (2.7–1.5 Ma). Andesite to dacite of the Nomugi-Toge volcanic rocks were concurrently active in the back arc side, and two eruption stages (2.6–2.2 and 2.1–1.7 Ma) are recognizable. Two voluminous dacite and rhyolite ignimbrites, the Hida Volcanic Rocks, were erupted deeper in the back-arc region, at ca 1.75 and 1.7 Ma. Both the Nomugi-Toge and Hida suites are also subalkalic, except for the last ignimbrite. In the Ueno Basalts, alkali olivine basalt was erupted in the earliest stage, and was followed by subalkalic basalt, showing that the magma segregation depth ascended with time. This coincided with uplift of the volcanic province and with quasi-concentric expansion of the eruption centers, suggesting that an upwelling mantle diapir was the cause of the volcanism. The Nomugi-Toge andesite–dacite lavas and the Hida dacite and rhyolite ignimbrites are considered to have originated from the same mantle diapir, because of their close proximity to the Ueno Basalts and their near-contemporaneous activity. Mantle diapirs have a significant role in the origin of subalkalic volcanic rocks in the island arcs.  相似文献   
133.
Magma plumbing system beneath Ontake Volcano, central Japan   总被引:2,自引:0,他引:2  
Ontake Volcano in central Japan was last active from ~ 100–35 Ka. The eruptions contained rhyodacite pumice and lavas in the first stage (stage O1, > 33 km3), followed by eruptions of andesite lavas and pyroclastics (stages O2 and O3, > 16 km3). Modeling of major and incompatible elements with Sr isotope ratios suggests that the primary magma was a high-alumina basalt. One andesite magma type appears to have evolved from the basalt in a closed system magma chamber, in part by fractional crystallization, and its generation included crustal assimilation. The other andesite magma type is considered to have evolved in an open system magma chamber in which repeated input of primary magma occurred together with wall-rock assimilation and fractional crystallization. The rhyodacite is inferred to have evolved in a closed system magma chamber by fractional crystallization of the second type of andesite. These genetic relationships require that the magma chamber functioned alternately as an open and a closed system. Geobarometry indicates that there may have been multiple magma chambers, located in the upper crust for the rhyodacite, near the upper–lower crust interface for the andesite and in the mid-lower crust for the basalt. These chambers were stacked to form the magma plumbing system of Ontake. Incompatible element compositions of the basalt are considered to have changed during the eruptions, suggesting that two different plumbing systems for stage O1 magma and for stages O2, O3 magmas existed during the 65 Ka of activity. Evolutionary history of the systems implies that the primary magma was introduced into the magma plumbing system each for ~ 17 500 years and that the life span of a magma plumbing system was shorter than 40 Ka.  相似文献   
134.
The enstatite chondrites formed under highly reducing (and/or sulfidizing) conditions as indicated by their mineral assemblages and compositions, which are sharply different from those of other chondrite groups. Enstatite is the major silicate mineral. Kamacite is Si-bearing and the enstatite chondrites contain a wide variety of monosulfide minerals that are not present in other chondrite groups. The unequilibrated enstatite chondrites are comprised of two groups (EH3 and EL3) and one anomalous member (LEW 87223), which can be distinguished by differences in their mineral assemblages and compositions. EH3 chondrites have >1.8 wt.% Si in their kamacite and contain the monosulfide niningerite (MgS), whereas EL3 chondrites have less than 1.4 wt.% Si in their kamacite and contain the monosulfide alabandite (MnS). The distinct mineralogies, compositions and textures of E3 chondrites make comparisons with ordinary chondrites (OCs) and carbonaceous chondrites (CCs) difficult, however, a range of recrystallization features in the E3s are observed, and some may be as primitive as type 3.1 OCs and CCs. Others, especially the EL3 chondrites, may have been considerably modified by impact processes and their primary textures disturbed. The chondrules in E3 chondrites, although texturally similar to type I pyroxene-rich chondrules, are sharply different from chondrules in other chondrite groups in containing Si-bearing metal, Ca- and Mg–Mn-rich sulfides and silica. This indicates formation in a reduced nebular environment separate from chondrules in other chondrites and possibly different precursor materials. Additionally the oxygen isotope compositions of E3 chondrules indicate formation from a unique oxygen reservoir. Although the abundance, size distribution, and secondary alteration minerals are not always identical, CAIs in E3 chondrites generally have textures, mineral assemblages and compositions similar to those in other groups. These observations indicates that CAIs in O, C and E chondrites all formed in the reservoir under similar conditions, and were redistributed to the different chondrite accretion zones, where the secondary alteration took place. Thus, chondrule formation was a local process for each particular chondrite group, but all CAIs may have formed in the similar nebular environment. Lack of evidence of water (hydrous minerals), and oxygen isotope compositions similar to Earth and Moon suggest formation of the E chondrites in the inner solar system and make them prime candidates as building blocks for the inner planets.  相似文献   
135.
The Nankai Trough, Japan, is a subduction zone characterized by the recurrence of disastrous earthquakes and tsunamis. Slow earthquakes and associated tremor also occur intermittently and locally in the Nankai Trough and the causal relationship between slow earthquakes and large earthquakes is important to understanding subduction zone dynamics. The Nankai Trough off Muroto, Shikoku Island, near the southeast margin of the rupture segment of the 1946 Nankai earthquake, is one of three regions where slow earthquakes and tremor cluster in the Nankai Trough. On the Philippine Sea plate, the rifting of the central domain of the Shikoku Basin was aborted at ~15 Ma and underthrust the Nankai forearc off Muroto. Here, the Tosa-Bae seamount and other high-relief features, which are northern extension of the Kinan Seamount chain, have collided with and indented the forearc wedge. In this study, we analyzed seismic reflection profiles around the deformation front of accretionary wedge and stratigraphically correlated them to drilling sites off Muroto. Our results show that the previously aborted horst-and-graben structures, which were formed around the spreading center of the Shikoku Basin at ~15 Ma, were rejuvenated locally at ~6 Ma and more regionally at ~3.3 Ma and have remained active since. The reactivated normal faulting has enhanced seafloor roughness and appears to affect the locations of slow earthquakes and tremors. Rejuvenated normal faulting is not limited to areas near the Nankai Trough, and extends more than 200 km into the Shikoku Basin to the south. This extension might be due to extensional forces applied to the Philippine Sea plate, which appear to be driven by slab-pull in the Ryukyu and Philippine trenches along the western margin of the Philippine Sea plate.  相似文献   
136.
Condensed aromatic rings are important skeletal components with regard to the recalcitrant nature of humic acids (HAs) in the environment. However, they have not been extensively studied. The relative content and composition (size distribution) of condensed aromatic rings in HAs were obtained from various soils subjected to transmission electron microscopy (TEM) and X-ray diffraction (XRD) profile analysis. In the XRD profiles of all the HAs, the 11 band that was derived from the carbon layer planes was clearly observed. Analysis of the 11 band indicated that the size of the carbon layer planes in HAs ranged from 0.48-1.68 nm, corresponding to 4- to 37-ring condensed aromatic structures. The contents of the total and larger carbon layer planes were larger in HAs with darker color and larger aromatic carbon content. At the same time, the carbon layer planes in HAs were smaller than those in a carbon black reference (from 0.24 to >3.66 nm). In the TEM analysis, fringes observed in HAs were less distinct and less ordered than those in carbon black, which was in agreement with the XRD result.  相似文献   
137.
Yamato 984028 (Y984028) is a newly identified lherzolitic shergottite, recovered from the Yamato Mountains, Antarctica, in 1999. As part of a consortium study, we conducted petrographic observations of Y984028 and its melt vein in order to investigate its shock metamorphism. The rock displays the typical non-poikilitic texture of lherzolitic shergottite, characterized by a framework of olivine, minor pyroxene (pigeonite and augite), and interstitial maskelynite. Shock metamorphic features include irregular fractures in olivine and pyroxene, shock-induced twin-lamellae in pyroxene, and the complete conversion of plagioclase to maskelynite, features consistent with those found in other lherzolitic shergottites. The melt vein is composed of coarse mineral fragments (mainly olivine) entrained in a matrix of fine-grained euhedral olivine (with several modes of compositional zoning) and interstitial glassy material. Some coarse olivine fragments consist of an assemblage of fine-grained euhedral to subhedral olivine crystals, suggesting shock-induced fragmentation, recrystallization, and/or a process of sintering. The implication is that the fine-grained olivine crystals in the matrix of the melt vein represent complicated crystallization environments and histories.  相似文献   
138.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   
139.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   
140.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号