首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  国内免费   3篇
测绘学   11篇
大气科学   30篇
地球物理   16篇
地质学   20篇
海洋学   11篇
综合类   3篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1963年   1篇
  1956年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
41.
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L−1, cadmium 3.1±0.3μg L−1, zinc 8.4±2.6μg L−1 and copper 0.3±0.1μg L−1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.  相似文献   
42.
Summary This work deals with idealized modelling experiments designed to understand the dynamical evolution of low frequency intraseasonal monsoonal oscillations that result from interactions between the large scale monsoon Reverse Hadley Cell (RHC) and moist convective processes. The monsoon differential heating, which primarily determines the low-level convergence of the large-scale monsoon flow, is found to play a decisive role in affecting the northward progression of the monsoonal modes. A strong north-south differential heating leads to a robust generation and steady maintenance of northward propagating monsoonal oscillations. A weaker land-ocean thermal contrast leads to feeble low frequency monsoonal modes that have relatively longer periods in the 30–50 day band. This increase in the period of the monsoonal oscillations due to weak north-south thermal contrast is in good agreement with the observational findings of Yasunari (1980) and Kasture and Keshavamurty (1987). It is speculated that such an increase in the oscillatory period may be an outcome from an elongation in the meridional scale of the transient Hadley type cells which act as resonating cavities for the monsoonal modes.A Mobile Wave CISK (MWC) form of interaction between the large scale monsoon and the transient circulations associated with the Madden Julian Oscillation (MJO) is projected as a viable physical mechanism for the northward movement of low frequency modes. It is demonstrated that the effective low level convergence, following such an interaction, tends to shift northward relative to the site of interaction. This enables the heating perturbations to be displaced northward which in turn causes the secondary circulations and wind perturbations to follow. The essential criterion for the occurrence of a prolonged northward propagation of the low frequency modes is that the heating perturbations should phase lead the wind perturbations at all times.An examination of the - interactions on the 30–50 day time scale reveals that the conversion from the transient divergent motions to rotational motions is quite intense (feeble) in the strong (weak) monsoon differential heating experiments. Because of the closer proximity to the monsoon heat source and also due to the latitudinal variation of earth's rotational effects, the - interactions tend to be more pronounced to the north of 15°N while they are less robust in the near equatorial latitudes.The regularity of the monsoonal modes is found to depend on the strength of the monsoon differential heating and also on the periodic behaviour of the equatorial intraseasonal oscillations. The monsoonal modes are quite steady and exhibit extreme regularity in the presence of a weak north-south differential heating provided the equatorial forcing due to the MJO varies in a periodic manner. This result supports the findings of Mehta and Krishnamurti (1988) who found greater regularity of the 30–50 day modes during bad monsoon years.The low frequency monsoonal modes are found to be quite sensitive to the moisture availability factor (m) and the vertical profile of heating used in the MWC parameterization. A small increase in the value of (m) is found to significantly intensify the amplitude of the monsoonal oscillations while there is no considerable shift in the spectral frequency within the 30–50 day band as such. The 30–50 day motions show significant enhancement, with a relatively sharp spectral peak around 45 days, when the vertical profile of MWC heating has a maximum in the lower troposphere. However an upward displacement of the heating maximum tends to weaken the low frequency oscillations.With 19 Figures  相似文献   
43.
RESOURCESAT-1 satellite was launched in October of 2003. Since then it has been consistently providing high quality 5 m monochromatic and multispectral images of same resolution. LISS-4 MX sensor has complex acquisition geometry. It operates in three spectral bands imaged by 3 CCD arrays, which are separated by a finite time in imaging along the satellite track direction. Individual band data is acquired at different times while the satellite is driven by a pre-determined yaw profile. In addition, the odd–even pixels are too shifted by a small fixed delay in time. A unique challenge in LISS-4 MX Level-2 data processing sub-system is to autonomously rectify and additionally co-register the three bands data because of the influence of orbit and attitude in the time gap in the imaging sequence. In this paper, authors bring out details of in-flight calibration arrived for LISS-4 MX sensor. It addresses parameterization of co-registration problem by doing sensitivity analysis of the geometric model parameters to achieve co-registration among all bands. This approach can also be used for other sensor system having similar imaging geometry to achieve improved image co-registration among bands.  相似文献   
44.
45.
The Mandovi and Chapora are two tropical estuaries lying in close geographic proximity on the west coast of India. Seasonal changes in down core variation of Fe, Mn and Total Organic Carbon (TOC) in the mangrove sediments adjoining these estuaries were studied to assess their influence on some of the representative benthic bacteria belonging to heterotrophic and autotrophic groups. Heterotrophic bacteria (HB) cultured on different nutrient concentrations (0.01%, 0.1% and 25%) together with nitrifiers (NtB; representating autotroph) were chosen to assess the influence of the above-mentioned abiotic parameters on the former. The experimental site located along the Mandovi is under the influence of extensive ferromanganese ore mining, while the control site at Chapora is relatively free from such influences. Geoaccumulation index computed for Mandovi showed that sediments (0-10cm) were 'uncontaminated to moderately contaminated' by Fe during the pre monsoon and monsoon seasons, while in the post monsoon season the 4-10cm fraction was almost completely restored from contamination. Similar computations for Mn showed that in pre monsoon, sediments fell in the 'moderately contaminated' and 'moderately to strongly contaminated' categories, while in the monsoon and post monsoon seasons all the sections were 'Uncontaminated'. The difference observed in correlation between Fe and Mn with the various fractions of heterotrophs and nitrifiers indicated that though these two elements shared a similar chemistry in the environment, microbes involved in biogeochemical processes might prefer them differentially. The relationship between TOC and HB enumerated on 0.01% dilute nutrient agar remained at r=0.50, p<0.05 throughout the year. Hence, it could be apparently linked to their preferred concentration of organic carbon requirement. A relationship of r=0.61, p<0.01 between manganese concentration and heterotrophs recovered on different strengths of nutrient agar is suggestive of their response to the metal enrichment. They could thus contribute towards maintaining the level of Mn at par with reference levels at Chapora. A positive correlation between Mn with NtB (n=10, p<0.05, r=0.58) at the experimental site during the non-monsoon months is suggestive of the latter's contribution to regulation of the metal concentration in the sediment probably through anaerobic nitrification at the expense of manganese. The study therefore supports our hypothesis that both autochthonous autotrophs and heterotrophs work in tandem to mitigate concentration of Mn and related metals in mangrove sediments.  相似文献   
46.
Abstract

A relatively simple process-oriented, physically-based distributed (PBD) hydrological model, the distributed runoff and erosion assessment model (DREAM), is described, and a validation study conducted in the semi-forested watershed of Pathri Rao, in the Garhwal Himalayas, India, is reported. DREAM takes account of watershed heterogeneity as reflected by land use, soil type, topography and rainfall, measured in the field or estimated through remote sensing, and generates estimates of runoff and sediment yield in spatial and temporal domains. The model is based on simultaneous solution of flow dynamics, based on kinematic wave theory, followed by solution of soil erosion dynamics. As the storm rainfall proceeds, the process of overland flow generation is dependent on the interception storage and infiltration rates. The components of the soil erosion model have been modified to provide better prediction of sediment flow rates and sediment yields. The validation study conducted to test the performance of the model in simulating soil erosion and sediment yield during different storm events monitored in the study watershed showed that the model outputs are satisfactory. Details of a sensitivity analysis, model calibration and the statistical evaluation of the results obtained are also presented and discussed. It is noteworthy that the distributed nature of the model combined with the use of geographical information system (GIS) techniques permits the computation and representation of the spatial distribution of sediment yield for simulated storm events, and a map of the spatial distribution of sediment yield for a simulated storm event is presented to highlight this capability.

Citation Ramsankaran, R., Kothyari, U.C., Ghosh, S.K., Malcherek, A., and Murugesan, K., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891.  相似文献   
47.
Fragility functions are commonly used in performance‐based earthquake engineering for predicting the damage state of a structure subjected to an earthquake. This process often involves estimating the structural damage as a function of structural response, such as the story drift ratio and the peak floor absolute acceleration. In this paper, a new framework is proposed to develop fragility functions to be used as a damage classification/prediction method for steel structures based on a wavelet‐based damage sensitive feature (DSF). DSFs are often used in structural health monitoring as an indicator of the damage state of the structure, and they are easily estimated from recorded structural responses. The proposed framework for damage classification of steel structures subjected to earthquakes is demonstrated and validated with a set of numerically simulated data for a four‐story steel moment‐resisting frame designed based on current seismic provisions. It is shown that the damage state of the frame is predicted with less variance using the fragility functions derived from the wavelet‐based DSF than it is with fragility functions derived from an alternate acceleration‐based measure, the spectral acceleration at the first mode period of the structure. Therefore, the fragility functions derived from the wavelet‐based DSF can be used as a probabilistic damage classification model in the field of structural health monitoring and an alternative damage prediction model in the field of performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
48.
Chemicals, especially silica, have been suspected to cause genetic alterations in pottery industry workers. The present study aims to analyze the frequency of chromosomal aberrations (CA), micronucleus (MN) and DNA damage (comet assay) in the peripheral blood lymphocytes and the immunological alterations workers chronically exposed to silica and in control subjects. In our study, 50 silica exposed workers and 35 control subjects were recruited and silica level was measured by respirable dust and respirable quartz concentrations of badge dosimeter. The serum immunoglobulins (IgM, IgG, and IgA) of all the subjects were measured by using ELISA method. The individuals exposed to silica have a significant increase in the frequency of CA, MN and the total DNA damage (p < 0.05). Immunoglobulin elevation on silica exposed workers was statistically significant (p < 0.05) on comparison with their respective controls. Investigation of the smoking and alcohol habitats coupled with silica exposure in exposed and control subjects represents alcohol consumption and smoking as additional risk factors and must be avoided. Multiple linear regression analysis obtained for CA, MN and comet assay confirm these tests as biomarkers for silica exposed pottery workers. Some confounding factors also showed significant influence on exposed subjects. These results indicate the mutagenic risk in the working environment has a high probability of association with the silica dust exposure in pottery industries. Nevertheless, the present study will create awareness and public concern not only among the silica exposed workers but also to the welfare of their progeny.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号