首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  国内免费   2篇
测绘学   1篇
大气科学   2篇
地球物理   26篇
地质学   14篇
海洋学   16篇
天文学   4篇
综合类   3篇
自然地理   8篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1993年   3篇
  1987年   1篇
  1985年   1篇
  1971年   1篇
排序方式: 共有74条查询结果,搜索用时 47 毫秒
31.
Fluvial tufa deposits in southwest Japan commonly develop biannual lamination consisting of dense summer layers and porous winter layers, and the clearness of the laminae varies among the sites. The laminae have been largely attributed to a seasonally variable inorganic precipitation rate of calcite. This rate-controlled hypothesis was examined by using quantitative data for calcite packing-density (CPD) and the precipitation rate of calcite (PWP rate) calculated from water chemistry. The results for four tufa-depositing sites in SW Japan show that a positive correlation between CPD and PWP rate becomes less certain with increasing PWP rate. In the temperature realm of SW Japan, tufas develop regular distinct seasonal change in CPD when deposited in water containing Ca values less than 65 mg/l, which results in a relatively low precipitation rate. The CPD of tufa deposits rarely exceeds 65%, owing to pore space between fine-grained calcite crystals and to porosity derived from decomposed cyanobacteria and other microorganisms. By increasing the Ca content to more than 65 mg/l, the CPD often attains an upper limit and becomes insensitive to seasonal changes in the PWP rate. Therefore, seasonal variations in CPD at sites with a higher Ca content are unclear, as seen in two examples from tropical islands in southern Japan and in one locality in a temperate climate. The flow rate and microbial density on the tufa surface are subordinate factors with respect to the CPD. Seasonal changes in these two factors often enhance the porous/dense contrast of biannual lamination in SW Japan.  相似文献   
32.
Recently, the occurrence of slow earthquakes such as low-frequency earthquakes and very low-frequency earthquakes have been recognized at depths of about 30 km in southwest Japan and Cascadia. These slow earthquakes occur sometimes in isolation and sometimes break into chain-reaction, producing tremor that migrates at a speed of about 5–15 km/day and suggesting a strong interaction among nearby small asperities. In this study, we formulate a 3-D subduction plate boundary model with two types of small asperities chained along the trench at the depth of 30 km. Our simulation succeeds in representing various types of slow earthquakes including low-frequency earthquakes and rapid slip velocity in the same asperity, and indicates that interaction between asperities may cause the very low-frequency earthquakes. Our simulation also shows chain reaction along trench with propagation speed that can be made consistent with observations by adjusting model parameters, which suggests that the interactions also explain the observed migration of slow earthquakes.  相似文献   
33.
Long-term monitoring of water quality and phytoplankton was conducted at 19 sampling stations in Harima-Nada, eastern Seto Inland Sea, Japan for 35 years from 1973 to 2007. There were two significant long-term changes, an increase in winter water temperatures of 0.042°C year?1, and a decrease in dissolved inorganic nitrogen (DIN) from about 10 μM in the 1970s to ~5 μM in the late 1990s due to the reduction in nutrient inputs. DIN concentrations and total phytoplankton cell density were both higher during the 1970s to the early 1980s and then exhibited a significant decrease in the mid 1980s and remained relatively constant thereafter. Diatoms were the dominant phytoplankton group (>90%) over the 35-year period, and there was a dramatic shift from Skeletonema dominance (~70%) to Chaetoceros in the mid 1980s. This shift in diatom species may be attributed to differences in the life cycle of Skeletonema and Chaetoceros and the response to the decrease in DIN concentration.  相似文献   
34.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   
35.
The Song Hong (Red River) delta occurs on the northwest coast of the South China Sea. Its evolution in response to Holocene sea-level changes was clarified on the basis of sedimentary facies and 14 radiocarbon dates from the 40 m long Duy Tien core from the delta plain, and using previously reported geological, geomorphological, and archaeological data. The delta prograded into the drowned valley as a result of early Holocene inundation from 9 to 6 cal. kyr BP, as sea-level rise decelerated. The sea-level highstand at +2–3 m from 6 to 4 cal. kyr BP allowed widespread mangrove development on the delta plain and the formation of marine notches in the Ha Long Bay and Ninh Binh areas. During sea-level lowering after 4 cal. kyr BP, the former delta plain emerged as a marine terrace, and the delta changed into the present tide- and wave-influenced delta with accompanying beach ridges. Delta morphology, depositional pattern, and sedimentary facies are closely related to Holocene sea-level changes. In particular, falling sea level at 4 cal. kyr BP had a major impact on the evolution of the Song Hong delta, and is considered to be linked to climate changes.  相似文献   
36.
The Hyuga-nada region of southwest Japan, which is located off the east coast of Kyushu Island, may have the potential to generate great interplate earthquakes along the Nankai trough in the future. In this area, thrust earthquakes of M = 6.7–7.2 have occurred with recurrence intervals of approximately 30 years. In association with these earthquakes, possible local heterogeneities of plate coupling may be expected within 100 km from the coast in the Hyuga-nada region. We investigate numerical experiments to determine the spatial and temporal resolution of slip on the plate interface beneath the Hyuga-nada offshore region. For this purpose, we calculated synthetic displacement data from the result of numerical simulation conducted for the afterslip following an Mw 6.8 earthquake, for existing global positioning system stations on land and planned ocean floor seismic network stations. The spatial and temporal distribution of fault slip is then estimated using a Kalman filter-based inversion. The slip distribution estimated by using ocean floor stations demonstrates that the heterogeneity of plate coupling is resolved approximately within 50 km from the coastal area. This heterogeneity corresponds to the coseismic area of an Mw 6.8 earthquake with a radius of 10 km. Our study quantitatively evaluates the spatial resolution of aseismic slip in the Hyuga-nada region. Analysis based on continuous ocean floor data is useful for resolving the spatial variations of heterogeneities in plate couplings.  相似文献   
37.
A series of 60-year numerical experiments starting from 1851 was conducted using a global climate model coupled with an aerosol-cloud-radiation model to investigate the response of the Asian summer monsoon to variations in the secondary organic aerosol (SOA) flux induced by two different estimations of biogenic volatile organic compound (BVOC) emissions. One estimation was obtained from a pre-existing archive and the other was generated by a next-generation model (the Model of Emissions of Gases and Aerosols from Nature, MEGAN). The use of MEGAN resulted in an overall increase of the SOA production through a higher rate of gasto-particle conversion of BVOCs. Consequently, the atmospheric loading of organic carbon (OC) increased due to the contribution of SOA to OC aerosol. The increase of atmospheric OC aerosols was prominent in particular in the Indian subcontinent and Indochina Peninsula (IP) during the pre- and early-monsoon periods because the terrestrial biosphere is the major source of BVOC emissions and the atmospheric aerosol concentration diminishes rapidly with the arrival of monsoon rainfall. As the number of atmospheric OC particles increased, the number concentrations of cloud droplets increased, but their size decreased. These changes represent a combination of aerosol-cloud interactions that were favorable to rainfall suppression. However, the modeled precipitation was slightly enhanced in May over the oceans that surround the Indian subcontinent and IP. Further analysis revealed that a compensating updraft in the surrounding oceans was induced by the thermally-driven downdraft in the IP, which was a result of surface cooling associated with direct OC aerosol radiative forcing, and was able to surpass the aerosolcloud interactions. The co-existence of oceanic ascending motion with the maximum convective available potential energy was also found to be crucial for rainfall formation. Although the model produced statistically significant rainfall changes with locally organized patterns, the suggested pathways should be considered guardedly because in the simulation results, 1) the BVOC-induced aerosol direct effect was marginal; 2) cloud-aerosol interactions were modeldependent; and 3) Asian summer monsoons were biased to a nonnegligible extent.  相似文献   
38.

When a subduction-zone earthquake occurs, the tsunami height must be predicted to cope with the damage generated by the tsunami. Therefore, tsunami height prediction methods have been studied using simulation data acquired by large-scale calculations. In this research, we consider the existence of a nonlinear power law relationship between the water pressure gauge data observed by the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) and the coastal tsunami height. Using this relationship, we propose a nonlinear parametric model and conduct a prediction experiment to compare the accuracy of the proposed method with those of previous methods and implement particular improvements to the extrapolation accuracy.

  相似文献   
39.
Tufas, which are freshwater carbonates, are potential archives of terrestrial paleoclimate. Time series of stable isotopic compositions commonly show regular seasonal patterns controlled by temperature-dependent processes, and some perturbation intrinsic to the locality. We examined three tufa-depositing sites in southwestern Japan with similar temperate climates, to understand the origin of local characteristics in the isotopic records. Seasonal change in the oxygen isotope is principally reflected by temperature-dependent fractionation between water and calcite but was perturbed after heavy rainfalls overwhelming the stability of the δ18O value of the groundwater at one site. Isotopic mass balance indicates an undersaturated and relatively small aquifer at this locality. Water δ18O values at the other two sites were stable, reflecting a regular seasonal change in the δ18O value of tufa. Perturbation of the δ13C values in tufa is largely due to CO2 degassing from the stream, which significantly increases the δ13C values of dissolved inorganic carbon (DIC). At a site with remarkably high pCO2 in springwater and a sensitive response of flow rate to rainfall, the amount of CO2 degassing changed distinctly with flow rate. In contrast, the other two sites having low pCO2 springwater reflect a regular seasonal pattern of δ13C in DIC and tufa specimens.  相似文献   
40.
The sole known chassignite, Chassigny, has a mean radiation age of 8.9±0.5 Myr, rather typical for a stony meteorite. Its low26 Al content (47.8±4.4 dpm/kg) and high 3He/21 Ne ratio (5.9) suggest that its preatmospheric size was not much greater than its recovered mass of 4 kg. Its K-Ar age is relatively short, 1.39±0.17 AE, presumably due to a late outgassing event in its parent body  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号