首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  国内免费   1篇
大气科学   2篇
地球物理   19篇
地质学   9篇
海洋学   10篇
天文学   4篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2005年   2篇
  2004年   2篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有49条查询结果,搜索用时 125 毫秒
41.
Volcanic activities can create cataclysmic hazards to surrounding environments and human life not only during the eruption but also by hydrologic remobilisation (lahar) processes after the cessation of eruptive activity. Although there are many studies dealing with the assessment and mitigation of volcanic hazards, these are mostly concentrated on primary eruptive processes in areas proximal to active volcanoes. However, the influence of volcaniclastic resedimentation may surpass the impacts of primary eruptive activity in terms of both extent and persistence, and can ultimately result in severe hazards in downstream areas.Examination of the volcaniclastic successions of non-marine Pliocene–Holocene sedimentary basins in Japan has revealed hydrological volcaniclastic sedimentation in fluvial and lacustrine environments hundreds of kilometres from the inferred source volcano. Impacts on these distal and often spatially separated basins included drastic changes in depositional systems caused by sudden massive influxes of remobilised pyroclastic material. Typical volcaniclastic beds comprise centimetre- to decimetre-thick primary pyroclastic fall deposits overlain by metre- to 10s of metres-thick resedimented volcaniclastic deposits, intercalated in sedimentary successions of non-volcanic provenance. The relatively low component of primary pyroclastic fall deposits in the volcaniclastic beds suggests that: 1) potential volcanic hazards would be underestimated on the basis of primary pyroclastic fall events alone; and 2) the majority of resedimented material was likely derived from erosion of non-welded pyroclastic flow deposits in catchment areas rather than remobilisation of local fallout deposits from surrounding hillslopes.The nature, distribution and sequence of facies developed by distal volcaniclastic sediments reflect the influence of: 1) proximity to ignimbrite, but not directly with the distance to the eruptive centre; 2) ignimbrite nature (non-welded or welded) and volume; 3) temporal changes in sediment flux from the source area; 4) the physiography and drainage patterns of the source area and the receiving basin, and any intervening areas; and 5) the formation of ephemeral dam-lakes and intra-caldera lakes whose potential catastrophic failure can impact distal areas. Models of the styles and timing of distal volcaniclastic resedimentation are thus more complicated than those developed for proximal settings of stratovolcanoes and their volcaniclastic aprons and hence present different challenges for hazard assessment and mitigation.  相似文献   
42.
Abstract Shipboard and shore‐based investigation on siliceous and calcareous microfossil biostratigraphy, magneto‐stratigraphy and tephrostratigraphy identified numerous datum events from the sedimentary sequences of Sites 1150 and 1151 drilled on the forearc basin of northern Japan by the Ocean Drilling Program Leg 186. Some 83 datum events were selected to construct new age–depth models for the sites. Based on the reliable magneto‐stratigraphy from the Pleistocene to the Upper Miocene, which were correlated to the standard geomagnetic polarity timescale, and on excellent records of diatom and radiolarian biostratigraphy throughout the sequences, the shipboard age model was revised. Major revisions referred to stratigraphic position of the Miocene–Pliocene boundary that has been shifted more than 200 m downward in each sequence. The age–depth relations of the forearc sites represent drastic changes in the sedimentation rate—extremely high (40 cm/k.y. on average) in the Early Pliocene and low (less than 2 cm/k.y. on average) in the Middle Miocene—and several hiatuses exist throughout the sequence. The drastic changes can be related mostly to changes in diatom sedimentation and the tectonics of the Japanese Island Arc. Local ages for some foraminiferal, calcareous nannofossil and radiolarian bioevents are estimated from the age–depth models at each site. These newly calibrated bioevents and biozones as well as established diatom biostratigraphy are incorporated into the updated magneto‐biochronologic timescale, which will contribute to an improvement in biochronologic accuracy of Neogene sediments in northern Japan and adjacent areas.  相似文献   
43.
Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.  相似文献   
44.
A numerical shelf circulation model was developed for the Scotian Shelf, using a nested-grid setup consisting of a three-dimensional baroclinic inner model embedded inside a two-dimensional barotropic outer model. The shelf circulation model is based on the Princeton Ocean Model and driven by three-hourly atmospheric forcing provided by a numerical weather forecast model and by tidal forcing specified at the inner model's open boundaries based on pre-calculated tidal harmonic constants. The outer model simulates the depth-mean circulation forced by wind and atmospheric pressure fields over the northwest Atlantic Ocean with a horizontal resolution of 1/12°. The inner model simulates the three-dimensional circulation over the Gulf of St. Lawrence, the Scotian Shelf, and the adjacent slope with a horizontal resolution of 1/16°. The performance of the shelf circulation model is assessed by comparing model results with oceanographic observations made along the Atlantic coast of Nova Scotia and in the vicinity of Sable Island (on the Scotian Shelf) during two periods: October 2000–March 2001 and April–June 2002. Analysis of model results on Sable Island Bank indicates that tidal currents account for as much as ∼80% of the total variance of near-bottom currents, and currents driven by local winds account for ∼30% of the variance of the non-tidal near-bottom currents. Shelf waves generated remotely by winds and propagating into the region also play an important role in the near-bottom circulation on the bank.  相似文献   
45.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   
46.
Yang  Shengmu  Sheng  Jinyu  Ohashi  Kyoko  Yang  Bo  Chen  Shengli  Xing  Jiuxing 《Ocean Dynamics》2023,73(5):279-301
Ocean Dynamics - In this study, the non-linear tide-surge interactions (NTSIs) over the eastern Canadian shelf (ECS) are examined numerically during two extreme weather events. A three-dimensional...  相似文献   
47.
Abstract. The role of larval settlement, post-settlement mortality and competition with a red algae in determining the patterns of abundance and distribution of the spirorbid tube worm Neodexiospira brasiliensis (Grube) (Polychaeta: Spirorbidae) on leaves of three seagrass species: Zostera marina Linnaeus, Zostera asiatica Miki and Phyllospadix iwatensis Makino were examined in Aininkap, Akkeshi Bay, Akkeshi, Hokkaido, Japan. Field collections of seagrass shoots were made at about 1-week intervals. The density of newly settled larvae (< 0.3 mm in tube diameter) increased significantly on Z. asiatica and P. iwatensis , but not on Z. marina during the sampling period. It was highest on Z. asiatica among the three seagrass species, followed by P. iwatensis and Z. marina . Newly settled larvae occurred more on the basal part of younger leaves of each seagrass species. Mortality tended to be high on Z. marina , followed by Z. asiatica and P. iwatensis , although the differences were not great. Size-specific mortality showed the existence of high mortality in early post-settlement stages on Z. asiatica and P. iwatenisis . Relatively high mortality was also suffered by individuals with a tube diameter over 1.5 mm. Growth in tube diameter of N. brasiliensis was slower on P. iwatensis than on the other two seagrasses. The effect of a calcareous red algae on larval settlement was investigated with removal experiments; however, no effect of red algae was detected. Patterns in the distribution and abundance of N. brasiliensis on leaves of three seagrass species resulted from the heterogeneity of larval settlement rather than from post-settlement mortality or competition with red algae. Different densities of larval settlement among the three seagrass species or on a leaf are likely to relate to larval behaviour, such as negative phototaxis.  相似文献   
48.
A New Scenario of the Parece Vela Basin Genesis   总被引:4,自引:0,他引:4  
Okino  K.  Kasuga  S.  Ohara  Y. 《Marine Geophysical Researches》1998,20(1):21-40
A new high density geophysical data set in the Parece Vela Basin north of 15°N has been obtained through surveys conducted by the Hydrographic Department of Japan. The combined analyses of the swath bathymetry, magnetic and gravity anomalies from these surveys reveal a new scenario for the genesis of this basin. The evolutionary process is as follows: rifting and crust thinning (29–26 Ma), northward propagation of east-west opening (26-23 Ma) , east-west opening together with the Shikoku Basin (23–21 Ma), and the northeast-southwest opening (20/19–15 Ma). The western part of the basin is complicated, displaying some traces of northward propagation of the spreading center. The change between early east-west opening and the final stage of northeast-southwest spreading is marked by a distinct north-south boundary in both structural and magnetic patterns. Deep and rough topography of the extinct Parece Vela Rift is due to magma starvation in the terminal phase of the spreading.  相似文献   
49.
Boninites are widely distributed along the western margin of the Pacific Plate extruded during the incipient stage of the subduction zone development in the early Paleogene period. This paper discusses the genetic relationships of boninite and antecedent protoarc basalt magmas and demonstrates their recycled ancient slab origin based on the T–P conditions and Pb–Hf–Nd–Os isotopic modeling. Primitive melt inclusions in chrome spinel from Ogasawara and Guam islands show severely depleted high‐SiO2, MgO (high‐silica) and less depleted low‐SiO2, MgO (low‐silica and ultralow‐silica) boninitic compositions. The genetic conditions of 1 346 °C at 0.58 GPa and 1 292 °C at 0.69 GPa for the low‐ and ultralow‐silica boninite magmas lie on adiabatic melting paths of depleted mid‐ocean ridge basalt mantle with a potential temperature of 1 430 °C in Ogasawara and of 1 370 °C in Guam, respectively. This is consistent with the model that the low‐ and ultralow‐silica boninites were produced by remelting of the residue of the protoarc basalt during the forearc spreading immediately following the subduction initiation. In contrast, the genetic conditions of 1 428 °C and 0.96 GPa for the high‐silica boninite magma is reconciled with the ascent of more depleted harzburgitic source which pre‐existed below the Izu–Ogasawara–Mariana forearc region before the subduction started. Mixing calculations based on the Pb–Nd–Hf isotopic data for the Mariana protoarc basalt and boninites support the above remelting model for the (ultra)low‐silica boninite and the discrete harzburgite source for the high‐silica boninite. Yb–Os isotopic modeling of the high‐Si boninite source indicates 18–30 wt% melting of the primitive upper mantle at 1.5–1.7 Ga, whereas the source mantle of the protoarc basalt, the residue of which became the source of the (ultra)low‐Si boninite, experienced only 3.5–4.0 wt% melt depletion at 3.6–3.1 Ga, much earlier than the average depleted mid‐ocean ridge basalt mantle with similar degrees of melt depletion at 2.6–2.2 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号