首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
测绘学   2篇
地球物理   16篇
地质学   18篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
排序方式: 共有36条查询结果,搜索用时 62 毫秒
21.
This paper attempts to investigate the tectonics of the southern Rif Cordillera. Hydrogeological and oil well data, together with interpretation of seismic reflection lines help to characterize the architecture of the Rharb–Mamora Basin located in the frontal region of the Gibraltar Arc. The facies map constructed from the drilling data exhibits four main types of Pliocene facies: (i) conglomerates; (ii) limestones; (iii) sandstones and sands more or less rich with shelly remains; (iv) clays. The lateral variation of deposits is accompanied by thickening, which can reach a few tens of metres. Thickening of layers and lithofacies variation indicate synsedimentary faulting processes. Two major fault zones have been identified: Kenitra–Sidi Slimane Fault Zone (K2SFZ) and Rabat–Kenitra Fault Zone (RKFZ). In the western coastal area, the geometrical configuration suggests a partition into horsts and grabens in the southern part, and a system of three geological units in the northern part. The analysis and interpretation of the gravity data reveal an important gravity anomaly, referred to as the Kenitra Gravity Anomaly. It corresponds to the Hercynian faults deduced by the seismic reflection line interpretation: K2SFZ and RKFZ. From Larache to El Jadida cities, the Kenitra area represents the hinge between the positive and negative gravity values, with a major negative anomaly in the eastern part of Kenitra. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
22.
Groundwater constitutes the main source of water supply in the High Mekerra watershed of northwestern Algeria. This resource is currently under heavy pressures to meet the growing needs of drinking water and irrigation. This study assesses the geochemical characteristics of groundwater of the High Mekerra watershed at 21 points distributed across the two main aquifers (Ras El Ma and Mouley Slissen) in the region. Hydrochemical facies of Ras El Ma groundwater are dominantly MgCl and CaCl type, while those of Mouley Slissen groundwater are of CaHCO3 type. Principal component analysis shows a strong correlation between groundwater mineralization and Ca2+, Na+, Cl? and SO4 2? ions stemming from the dissolution of carbonates, gypsum and anhydrite. Groundwater mineralization evolves from south to north. Geochemical modeling shows that the High Mekerra groundwater is saturated with respect to calcite and dolomite and undersaturated with respect to gypsum and anhydrite. Nitrate concentrations that exceed the WHO standard (50 mg L?1) at several points are linked to the agro-pastoral activities in this region.  相似文献   
23.
Being a laborious approach, manual calibration of hydrologic model in a semi-arid context requires in-depth knowledge of the watershed and as much as possible field input data to obtain reliable simulations. In this study, manual calibration and relative sensitivity analysis approaches of the SWAT model (Soil and Water Assessment Tool) were applied for water balance in a 1993 km2 watershed (on the R’dom river) located in North-western Morocco. The watershed is located in a semi-arid area dominated by agro-forestry activities. The objectives of this study were (i) to perform a local sensitivity analysis of the SWAT model taking into consideration the watershed characteristics and (ii) to implement a detailed methodology of manual calibration and validation of the model in a semi-arid context. Sensitivity analysis has been carried out on 12 different SWAT input parameters, and has revealed that 4 input parameters only were the most influential ones on flow components of the R’dom watershed. Model manual calibration was conducted along 2006 and 2007 by comparing measured and predicted monthly and daily discharges and taking Nash-Sutcliffe coefficient (NSE), determination coefficient (R 2), and percent bias (PBIAS) as goodness-of-fit indicators. Validation has been performed by the same approach through 2008 and 2009 period. All final NSE values were above 0.5, R 2 values exceeded 0.7, and PBIAS lower than 25% demonstrating satisfactory model performances over the study watershed conditions. The SWAT model set-up with measured input data, manually calibrated and validated, reflects well the real hydrologic processes occurring in the R’dom watershed and can be used to assess current and future conditions and to evaluate alternative management practices.  相似文献   
24.
This paper deals with the relationship between the physical characteristics of the Rharb-Mamora basin (Northern Morocco) and the distribution of hydraulic conductivity values in the Plio-Quaternary aquifer. A steady state groundwater model has been calibrated using these values. The distribution of hydraulic conductivity corresponds to a hydrodynamic partition with permeabilities of 2×10–3 to 5×10–2 ms–1 (in the coastal part). A numerical modeling process shows a relative error map between calculated and measured piezometric surfaces, in order to facilitate calibration in steady state.The distribution of hydraulic conductivity values, and the lateral variation of sequences (deduced from engineering geology methods e.g. hydrogeological drilling data, seismic reflection interpretation, and geostatistical analysis), are controlled by synsedimentary fault activity, which deepened the Mio-Pliocene basement resulting in a thickening of overlying permeable rocks.
Resumen Esta nota trata la relación existente entre las características físicas y la distribución de la conductividad hidráulica de los acuíferos subyacentes de la cuenca del Rharb-Mamora (norte de Marruecos). Para la simulación del flujo del agua subterránea se ha establecido un modelo en régimen permanente. La distribución de la conductividad hidráulica corresponde a un reparto hidrodinámico cuyo grado de permeabilidad es generalmente alto: desde 2×10–3 hasta 5×10–2 ms–1 (zona costera). Con el objetivo de facilitar la calibración del modelo en régimen permanente, el proceso numérico realizado mostró errores relativos entre la piezometría calculada y medida. La distribución de los valores de permeabilidad y la variación lateral de las unidades permeables ha sido deducida a partir de métodos de geología aplicada (análisis de los sondeos hidrogeológicos, interpretación de los perfiles de sísmica de reflexión y aplicación de métodos geoestadísticos), y están controlados por la actividad de las fallas sinsedimentarias que influyen sobre la topografía del basamento mio-plioceno y el grosor de las unidades acuíferas.

Résumé Cette note traite la relation entre les caractéristiques physique du bassin Rharb-Mamora (Nord du Maroc) et la répartition de la conductivité hydraulique du réseau aquifère. Le modèle de simulation des écoulements souterrains a été établi en régime permanent. La distribution de la conductivité hydraulique correspond à un découpage hydrodynamique dont le degré de perméabilité est généralement bon entre 2×10–3 to 5×10–2 ms–1 (zone côtière). Afin de faciliter le calage en régime permanent, le code numérique établi permet de mettre en évidence les erreurs relatives entre la piézométrie calculée et mesurée.La distribution des valeurs de perméabilité et la variation latérale des unités perméables, déduites des méthodes de la géologie appliquée (analyse des forages hydrogéologiques, interprétation des profils sismique réflexion et analyse géostatistique), sont contrôlées par lactivité des failles synsédimentaires qui influencent lapprofondissement du substratum hydrogéologique mio-pliocène et lépaississement des corps perméables.
  相似文献   
25.
A large travertine outcrop south of Errachidia, southern Morocco, was studied and U/Th dated. The carbonate fraction was provided by groundwaters then, as now, from the eastern High Atlas percolating through the regional Infra-Cenomanian aquifer. There were two main periods of accumulation at ca 262 kyr BP and 20–11.5 kyr BP separated by a long discontinuity with some limited weathering and erosion and correlated in part with a period of erosion at 30–20 kyr BP further to the west. The two travertine-deposition periods suggest increased rainfall and/or cooler thermal conditions in the eastern High Atlas source regions. Massive travertine accumulation ceased at the end of the Upper Pleistocene. To cite this article: L. Boudad et al., C. R. Geoscience 335 (2003).To cite this article: L. Boudad et al., C. R. Geoscience 335 (2003).  相似文献   
26.
Neoproterozoic volcanic series are exposed in the northern edge of the Saghro massif (Eastern Anti-Atlas, Morocco). Four volcanic rock types (basalt, andesite, dacite, and rhyolite) were distinguished in the Boumalne inlier within the so-called Saghro volcanic sequences based on petrographic and geochemical observations. Boumalne volcanic rocks contain high Al2O3, Fe2O3, Ba, Sr, Zr, Rb, and Nb contents, including calc-alkaline affinity in composition. Boumalne volcanic rocks are similar to other lower-Neoproterozoic volcanic rocks such Agouiniy formation in Sirwa inlier and in other parts of Bou-Azzer inlier. Indeed, they indicate an active subduction signature. The geochemical data show a LREE enrichment compared to HREE. The fractional crystallization has played a major role during the evolution of the magma. The less-siliceous dacitic rocks could have been formed after a low degree of partial melting of mafic parental magma source, whereas the rich-siliceous rhyolite may have been derived from dacitic magma source by a higher degree of fractional crystallization.  相似文献   
27.
An area of about 30 km2 located in Ain Jouhra, south of Rabat, Morocco, was the subject of a geoelectric resistivity investigation. The main goal of the investigation was the assessment of the groundwater potential of the uppermost aquifer. The aquifer conditions such as depth, thickness and boundaries were also investigated. The obtained apparent resistivity curves were first analysed qualitatively and classified using simple curve shapes. Thereafter, the data were converted to resistivity and thickness pairs semi‐quantitatively by means of master curves and then quantitatively by computer modelling using ATO and Winsev software (Zohdy, 1989; Zohdy and Bisdrof, 1989). Lithological control from the available single well with a stratigraphic log aided in the correlation of the resistivity values to different rock units. Three different AB‐spacing iso‐resistivity maps, an isopach map of the main groundwater‐bearing horizon, the depth to the aquifer substratum map and five geoelectric cross‐sections were constructed. The interpretation of these soundings indicates the presence of an unconfined to semi‐confined sandy aquifer with relatively important extent and varying thickness. The maximal thickness of the aquifer is recorded in the central part of the investigated area and is thinning southwards to pinch out farther to the south. Geophysical as well as field data indicate a hydraulic connection between the upper and deeper aquifers. Indeed, the two aquifers are separated from each other by a marly substratum that is indicated throughout the area by the lowest values of the interpreted true resistivity. The value of this resistivity varies laterally, most likely due to the lateral variation in the shale‐to‐sand ratio. The altitude of the substratum decreases towards the north, and increases southwards. Regarding the availability of the groundwater in the study area, zones with high potential are theoretically expected to occur in the central part where the transversal resistance is greatest. However, sufficient water supply and high flow rates from wells intended to produce restrictively from the most upper aquifer are not likely to exist. This conclusion, which seems to be very pessimistic, is evidenced from two real field and experimental observations. The first is the rapid fall of the level of Gharnoug lake, despite the ongoing feeding by three wells. Hence, the amount of water level drop cannot be accounted for by the evaporation alone. That means that the deeper aquifer is continuously draining the upper aquifer at a high flow rate. Very low rates are recorded in all the wells that penetrated only the upper aquifer, the exception being the well that reached deeper into the lower aquifer. The flow rate in this lower aquifer measured 18 litre s?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
28.
In this paper, we propose a coupling of a finite element model with a metaheuristic optimization algorithm for solving the inverse problem in groundwater flow (Darcy's equations). This coupling performed in 2 phases is based on the combination of 2 codes: This is the HySubF‐FEM code (hydrodynamic of subsurface flow by finite element method) used for the first phase allowing the calculation of the flow and the CMA‐ES code (covariance matrix adaptation evolution strategy) adopted in the second phase for the optimization process. The combination of these 2 codes was implemented to identify the transmissivity field of groundwater by knowing the hydraulic head in some point of the studied domain. The integrated optimization algorithm HySubF‐FEM/CMA‐ES has been validated successfully on a schematic case offering an analytical solution. As realistic application, the integrated optimization algorithm HySubF‐FEM/CMA‐ES was applied to a complex groundwater in the north of France to identify the transmissivity field. This application does not use zonation techniques but solves an optimization problem at each internal node of the mesh. The obtained results are considered excellent with high accuracy and fully consistent with the hydrogeological characteristics of the studied aquifer.However, the various numerical simulations performed in this paper have shown that the CMA‐ES algorithm is time‐consuming. Finally, the paper concludes that the proposed algorithm can be considered as an efficient tool for solving inverse problems in groundwater flow.  相似文献   
29.
This article studies the effect of drought and pumping discharge on groundwater supplies and marine intrusion in the Korba aquifer (Cap‐Bon peninsula, Tunisia). The Groundwater Modelling System has been used to model the groundwater flow and to simulate the seawater intrusion. The calibration is based on the groundwater levels in the steady state from 1963, and in the transient state from the groundwater levels from 1963 to 2005. The main objective is to quantify the components of the groundwater mass balance and to estimate the hydraulic conductivity distribution. The impact of pumping discharge on the groundwater level evolution has been examined by two pumping scenarios P1 (no. 8420) and P2 (no. 8862) wells. The hydrodynamic modelling shows the increasing drawdowns after 14 years of pumping: 4 m in P1 well and about 5 m in P2 well below sea level. The drawdowns are accompanied by the inverse hydraulic gradient. The numerical model was used to discuss the management of the groundwater resources of Cap‐Bon. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1963 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers to the marine intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
30.
Thermal and hydrothermal effects of Triassic–Liassic basalt flow deposition on sedimentary series of the Argana Basin are responsible for major modifications in detrital clays, until 20 m in depth. It expressed by transformation of detrital smectite to corrensite and moreover to chlorite, and by increasing illite crystallinity. On the 2 m of sediments located immediately under the flow, magnesium-rich hydrothermal fluids have caused precipitation of new mineral phases. To cite this article: L. Daoudi, J.-L. Pot de Vin, C. R. Geoscience 334 (2002) 463–468.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号