首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
大气科学   3篇
地球物理   11篇
地质学   6篇
海洋学   2篇
天文学   14篇
  2024年   1篇
  2021年   1篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1996年   1篇
  1981年   1篇
  1956年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
11.
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.  相似文献   
12.
High‐resolution palaeorecords of climate are critical to improving current understanding of climate variability, its sensitivity and impact on the environment in the past and in the future. Sediments from the Cariaco Basin off the coast of Venezuela have proven to be sensitive recorders of tropical palaeoclimate variability down to an annual scale. However, the fingerprint of climate and sea level in the sediments of the last glacial period is still not completely understood. In this study, lamination analysis of sediments from the Cariaco Basin is extended to the last glacial period. Detailed sedimentological and geochemical analysis (laser ablation–inductively coupled plasma–mass spectrometry) reveals couplets of light‐coloured, terrigenous‐rich and dark‐coloured, biogenic opal‐rich laminae, which are interpreted to reflect the seasonal migration of the Intertropical Convergence Zone. In addition, a previously undescribed, nearly pure terrigenous lamina type is observed, which is referred to hereafter as a ‘C‐layer’. The C‐layers in the sedimentary sequence are interpreted as flood layers that originate from local rivers. The occurrence of these C‐layers is investigated for two core locations in the Cariaco Basin over the last 110 kyr by continuous X‐ray fluorescence scanning. Dansgaard–Oeschger oscillations are most clearly traced by proxies reflecting productivity and marine organic matter content of the sediment. In contrast, the abundance of terrigenous material differs at times between the two sites. On an interglacial to glacial timescale, the ability to record events causing C‐layers is likely to be influenced by changes in sea level and source proximity. On a millennial scale, both sediment cores contain more C‐layers during warmer interstadials compared with colder stadials during Marine Isotope Stage 3. This finding implies that interstadials were not only wetter than stadials, but probably also characterized by increased rainfall variability, leading to an enhanced frequency of flooding events in the hinterland of the Cariaco Basin.  相似文献   
13.
We simulated entrainment of carbonates (calcite, dolomite) in silicate impact melts by 1-bar laser melting of silicate–carbonate composite targets, using sandstone, basalt, calcite marble, limestone, dolomite marble, and iron meteorite as starting materials. We demonstrate that carbonate assimilation by silicate melts of variable composition is extremely fast (seconds to minutes), resulting in contamination of silicate melts with carbonate-derived CaO and MgO and release of CO2 at the silicate melt–carbonate interface. We identify several processes, i.e., (1) decomposition of carbonates releases CO2 and produces residual oxides (CaO, MgO); (2) incorporation of residual oxides from proximally dissociating carbonates into silicate melts; (3) rapid back-reactions between residual CaO and CO2 produce idiomorphic calcite crystallites and porous carbonate quench products; (4) high-temperature reactions between Ca-contaminated silicate melts and carbonates yield typical skarn minerals and residual oxide melts; (5) mixing and mingling between Ca- or Ca,Mg-contaminated and Ca- or Ca,Mg-normal silicate melts; (6) precipitation of Ca- or Ca,Mg-rich silicates from contaminated silicate melts upon quenching. Our experiments reproduce many textural and compositional features of typical impact melts originating from silicate–carbonate targets. They reinforce hypotheses that thermal decomposition of carbonates, rapid back-reactions between decomposition products, and incorporation of residual oxides into silicate impact melts are prevailing processes during impact melting of mixed silicate–carbonate targets. However, by comparing our results with previous studies and thermodynamic considerations on the phase diagrams of calcite and quartz, we envisage that carbonate impact melts are readily produced during adiabatic decompression from high shock pressure, but subsequently decompose due to heat influx from coexisting silicate impact melts or hot breccia components. Under certain circumstances, postshock conditions may favor production and conservation of carbonate impact melts. We conclude that the response of mixed carbonate–silicate targets to impact might involve melting and decomposition of carbonates, the dominant response being governed by a complex variety of factors.  相似文献   
14.
We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser-generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer-sized quench droplets in Si-rich glasses. The compositions of the conjugate immiscible liquids (Si-rich and Fe-rich) are consistent with phase separation in two-liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major-element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si-rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe-rich melt, whereas K, Na, and Si prefer the highly polymerized, Si-rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.  相似文献   
15.
We report on a survey for narrow (full widths at half-minimum <600 km s−1) C  iv absorption lines in a sample of bright quasars at redshifts  1.8 ≤ z < 2.25  in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow C  iv absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad Mg  ii emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find that a substantial number (  ≥43 ± 6  per cent) of absorbers with   W λ15480 > 0.3  Å in the velocity range  +750 ≲ v ≲+ 12 000  km s−1 are intrinsic to the active galactic nucleus outflow. This 'outflow fraction' peaks near   v =+2000  km s−1 with a value of   f outflow≃ 0.81 ± 0.13  . At velocities below   v ≈+ 2000  km s−1, the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disc. Furthermore, we find that outflow absorbers are on average broader and stronger than cosmologically intervening systems. Finally, we find that ∼14 per cent of the quasars in our sample exhibit narrow, outflowing C  iv absorption with   W λ15480 > 0.3  Å, slightly larger than that for broad absorption line systems.  相似文献   
16.
17.
Two interdisciplinary cruises aimed at relating the ecology of marine fish populations to oceanographic conditions were fielded during the late summer and late winter seasons near Palmyra Atoll (5.9°N, 162.1°W) in the Line Islands. Ocean current and hydrographic measurements revealed interaction of the flow with the steep topography. During the first cruise (August/September 1990) satellite-tracked surface drifters and acoustic Doppler current profiler (ADCP) measurements showed a strong eastward setting North Equatorial Counter Current (NECC) with maximum speeds exceeding 1 m s–1 at 80 m depth approximately. This current turned southeastward on closer approach to Palmyra. The drifter paths exhibited excursions with zonal wavelength of approximately 250 km, meridional amplitude of 25 km and period of approximately 5 days. During the second cruise (February/March 1992), the ADCP-derived speeds of the NECC were weaker (maxima approximately 33 cm s–1) while the relative geostrophic flow component was of magnitude similar to 1990 and the signal of zonal geostrophic currents reached much deeper to approximately 650 m depth (150 m in 1990). Doming isopycnals beneath the surface mixed layer as well as thick (10–25 m) internal mixed layers were found near Palmyra during both cruises, with slightly different positions relative to the island. The discontinuous vertical temperature profiles may have been a result of strong boundary mixing due to breaking internal waves on Palmyras steep slopes. In the immediate vicinity of the island variations in flow speed, stratification and mixing in both the alongshore and cross-isobath directions were observed. Overall, the current speeds were reduced during February/March 1992, the peak time of the 1991–1993 warm event in the tropical Pacific. While parameters of turbulent two-dimensional wake theory are suggestive of formation and shedding of eddies in the lee of the island, no direct observations of circular motions were made in either expedition.Responsible Editor: Hans Burchard  相似文献   
18.
19.
We reevaluate the systematics and geologic setting of terrestrial, lunar, Martian, and asteroidal “impactites” resulting from single or multiple impacts. For impactites derived from silicate rocks and sediments, we propose a unified and updated system of progressive shock metamorphism. “Shock-metamorphosed rocks” occur as lithic clasts or melt particles in proximal impactites at impact craters, and rarely in distal impactites. They represent a wide range of metamorphism, typically ranging from unshocked to shock melted. As the degree of shock metamorphism, at a given shock pressure, depends primarily on the mineralogical composition and the porosity of a rock or sediment sample, different shock classification systems are required for different types of planetary rocks and sediments. We define shock classification systems for eight rock and sediment classes which are assigned to three major groups of rocks and sediments (1) crystalline rocks with classes F, M, A, and U; (2) chondritic rocks (class C); and (3) sedimentary rocks and sediments with classes SR, SE, and RE. The abbreviations stand for felsic (F), mafic (M), anorthositic (A), ultramafic (U), sedimentary rocks (SR), unconsolidated sediments (SE), and regoliths (RE). In each class, the progressive stages of shock metamorphism are denominated S1 to Sx. These progressive shock stages are introduced as: S1–S7 for F , S1–S7 for M, S1–S6 for A , S1–S7 for U , S1–S7 for C , S1–S7 for SR , S1–S5 for SE , and S1–S6 for RE . S1 stands for “unshocked” and Sx (variable between S5 and S7) stands for “whole rock melting.” We propose a sequence of symbols characterizing the degree of shock metamorphism of a sample, i.e., F-S1 to F-S7 with the option to add the tabulated pressure ranges (in GPa) in parentheses.  相似文献   
20.
With this addendum we provide some correction and additional information regarding the above cited publication. It addresses the following two topics. (1) Clarification for a correct application of the criteria for certain shock stages of chondrites, in particular stage C‐S6. (2) Correction of a printing error in the table that contains the shock classification system of chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号