首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   6篇
  国内免费   18篇
测绘学   15篇
大气科学   3篇
地球物理   8篇
地质学   42篇
海洋学   6篇
综合类   12篇
自然地理   6篇
  2024年   2篇
  2023年   2篇
  2022年   19篇
  2021年   13篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2005年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1986年   1篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
31.
张乐乐  高黎明  陈克龙 《冰川冻土》2018,40(6):1216-1222
利用2014年5月至2015年11月青海湖流域瓦颜山湿地观测的辐射资料,综合分析了辐射相关因子的变化特征。结果表明:瓦颜山湿地总辐射和净辐射的最大值都出现在7月,最小值都出现在12月;大气长波辐射最大值出现在8月,最小值出现在12月;地面长波辐射最大值出现在7月,最小值出现在2月。阴天对总辐射和地面反射辐射削弱作用比较明显,对大气长波辐射增强作用明显,对地面长波辐射和净辐射的影响季节差异性很大。瓦颜山湿地地表反照率的年均值为0.26。在无积雪覆盖条件下,地表反照率在冻结期明显大于消融期,最大值出现在12月。夏季地表反照率均值为0.185,略小于下垫面同为草甸的青藏高原唐古拉站。在暖季,土壤水分也是影响高寒湿地地表反照率变化的重要因子,随着表层土壤含水量的增加,地表反照率随之减小。  相似文献   
32.
33.
通过构建汾河流域城市化与水资源系统指标体系,利用综合评价法对2010—2019年汾河流域城市化和水资源综合水平的变化趋势进行分析,在此基础上构建耦合协调度模型,分析汾河流域城市化与水资源的耦合协调关系。结果表明:汾河流域城市化综合指数整体呈上升趋势,城市化子系统重要程度表现为经济城市化>社会城市化>空间城市化>人口城市化;水资源综合指数呈波动上升趋势,水资源子系统重要程度呈现出水资源利用>水资源水平>水资源保护,水资源环境不断优化,2013年出现短期下降,主要受水资源量和用水量等要素的影响;从时间上看,2010—2019年汾河流域城市化与水资源耦合协调度不断提高,经历了从2010年低水平轻度失调到2019年高水平协调发展过程;空间上,2010—2019年汾河流域六市城市化与水资源耦合协调度不断提升,吕梁、太原、忻州达到良好协调水平,临汾、运城处于勉强协调水平,而晋中则处于磨合阶段的濒临失调水平。  相似文献   
34.
分析大气气溶胶空间分布的影响因素有助于理解其变化机制与规律,从而为大气环境质量的调控提供科学依据。本文以厦门市为例,利用MODIS-Aqua卫星遥感影像,反演了大气气溶胶光学厚度。同时,选取Landsat8 OLI卫星数据,进行土地覆被分类。在此基础上,利用相关分析、一元线性回归模型和方差分解,对比研究了城市林地和建设用地对大气气溶胶空间分布的影响作用,得出以下结论:① 暗像元与插值法的结合适合厦门地区春季气溶胶光学厚度的反演;② 建设用地上空气溶胶光学厚度值明显高于林地;③ 林地对气溶胶空间分布的影响作用强于建设用地。本研究对缓解城市大气污染和改善城市生态环境具有重要参考价值和意义。  相似文献   
35.
目前针对模型结构不确定性的研究方法主要为贝叶斯模型平均方法,而该方法受到模型权重计算困难等影响,应用受限。基于数据驱动的模型结构误差统计学习方法最近得到关注。研究采用高斯过程回归方法对地下水模型结构误差进行统计模拟,并将DREAMzs算法与高斯过程回归相结合,对地下水模型和统计模型的参数同时进行识别。基于此方法,分别以理想岩溶裂隙海水入侵过程和溶质运移柱体实验为例,进行地下水数值模拟及预测结果的不确定性分析。相对于不考虑模型结构误差条件的不确定性分析,结果表明,考虑结构误差之后,能够明显减少参数识别过程中的参数补偿影响,且能显著提高模型的预测性能。因此,基于高斯过程回归的模型结构不确定性分析可以一定程度控制地下水数值模拟的不确定性,提高模型预测可靠性。  相似文献   
36.
自2018年山东省地理信息公共服务平台框架数据更新工作实施以来,各市县陆续开展相应工作,该文介绍了平台框架数据更新工作的必要性及更新原则,并阐述了滨州市市级节点成熟的更新模式和相关新技术应用,为智慧滨州、数字滨州建设提供了数据支撑,对山东省省市框架数据联动更新具有一定的示范作用和借鉴意义。  相似文献   
37.
The Tianshan range, a Paleozoic orogenic belt in Central Asia, has undergone multiple phases of tectonic activities characterized by the N–S compression after the early Mesozoic, including the far-field effects of the Cenozoic Indian–Asian collision. However, there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range. Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic. Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts. Based on detail fieldwork conducted in this study, the middle–late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata. The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4 ± 3.1 and 215.5 ± 2.9 Ma, respectively, indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226–220 and 218–212 Ma. The geochronological distribution of detrital samples from the Early–Middle Triassic and Late Triassic revealed abrupt changes, suggesting a new source supply resulting from tectonic activation in the Tianshan range. The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226–220 Ma (during the Late Triassic) and ended at approximately 218–212 Ma. These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.  相似文献   
38.
汉江兴隆水利枢纽运行后,坝下游近坝段枯水位较建坝前下降明显,500~800 m3/s流量下,2021年较运行前坝下水位累计下降2.47~2.55 m,对工程安全及效益发挥带来不利影响。基于水文、断面、水下地形等观测资料,对枯水位下降的原因进行深入剖析。结果表明,兴隆水利枢纽的拦沙作用有限,皇庄以上沙量减少是兴隆以下河床冲刷加剧的重要原因,高水调平导致的年内枯水上滩几率下降和航道整治护滩工程是强冲刷过程中“滩淤槽冲”的核心因素。坝下游河段枯水河槽冲刷及汉口最低水位下降是造成兴隆近坝段枯水位下降的直接原因。随机森林算法分析显示,对兴隆坝下水位变化影响最大的因素为兴隆站输沙率的锐减。此外,航道整治工程、河床边界条件对枯水位下降也有十分重要的驱动作用。兴隆坝址及下游河段的河床组成偏细,2012-2022年虽然河床剧烈冲刷,但床沙组成没有出现粗化的现象,预计河床仍将继续冲刷下切,枯水位尚未达到稳定状态。  相似文献   
39.
Two important problems in the practical implementation of kriging are: (1) estimation of the variogram, and (2) estimation of the prediction error. In this paper, a nonparametric estimator of the variogram to circumvent the problem of the precise choice of a variogram model is proposed. Using orthogonal decomposition of the kriging predictor and the prediction error, a method for selecting, what may be considered, a statistical neighborhood is suggested. The prediction error estimates based on this scheme, in fact, reflects the true prediction error, thus leading to proper coverage for the corresponding prediction interval. By simulations and a reanalysis of published data, it is shown that the proposals made in this paper are useful in practice.  相似文献   
40.
王晓雨  管磊  李乐乐 《遥感学报》2018,22(5):723-736
本文对2011-07-01—2011-09-30风云三号B星(FY-3B)搭载的微波成像仪MWRI(Microwave Radiometer Imager)和Aqua卫星搭载的微波扫描辐射计AMSR-E(Advanced Microwave Scanning Radiometer for Earth Observing System)观测数据获取的海冰密集度产品进行比较及印证。首先,逐日比较FY-3B/MWRI和Aqua/AMSR-E区域平均海冰密集度;其次,逐月比较FY-3B/MWRI和Aqua/AMSR-E月平均海冰密集度;最后,使用Aqua卫星搭载的中等分辨率成像光谱辐射计MODIS数据进行印证。MWRI和AMSR-E比较结果为(1)MWRI与AMSR-E逐日区域平均海冰密集度变化趋势一致,MWRI海冰密集度均高于AMSR-E,7—9月MWRI与AMSR-E逐日平均偏差月平均值分别为8.55%、7.67%、2.58%,逐日标准差月平均值分别为12.16%、12.08%、10.43%,二者差异逐月减小。(2)MWRI与AMSR-E月平均海冰密集度差呈现逐月递减趋势,7—9月MWRI与AMSR-E逐月平均偏差分别为7.37%、6.53%、1.51%,逐月标准差分别为4.61%、4.36%、3.64%,MWRI与AMSR-E差异逐月减小的原因是二者在密集度较低的边缘区域差异较大,而夏季随着边缘区域海冰的融化,二者差异逐渐减小。MWRI和AMSRE海冰密集度与MODIS印证结果为:(1)密集度小于95%情况下,MWRI与AMSR-E海冰密集度均比MODIS偏高,AMSR-E更接近MODIS,MWRI高估,误差较大。(2)密集度大于等于95%情况下,MWRI与AMSR-E海冰密集度均比MODIS偏低,AMSR-E偏低更多,MWRI结果更好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号