首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   22篇
  国内免费   5篇
测绘学   5篇
大气科学   19篇
地球物理   69篇
地质学   96篇
海洋学   18篇
天文学   20篇
综合类   1篇
自然地理   21篇
  2023年   6篇
  2022年   7篇
  2021年   6篇
  2020年   12篇
  2019年   6篇
  2018年   16篇
  2017年   20篇
  2016年   10篇
  2015年   6篇
  2014年   13篇
  2013年   13篇
  2012年   14篇
  2011年   17篇
  2010年   13篇
  2009年   14篇
  2008年   18篇
  2007年   5篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1991年   4篇
  1989年   1篇
  1983年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
241.
The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.  相似文献   
242.
The aim of this study is to assess the influence of sensor locations and varying observation accuracy on the assimilation of distributed streamflow observations, also taking into account different structures of semi-distributed hydrological models. An ensemble Kalman filter is used to update a semi-distributed hydrological model as a response to measured streamflow. Various scenarios of sensor locations and observation accuracy are introduced. The methodology is tested on the Brue basin during five flood events. The results of this work demonstrate that the assimilation of streamflow observations at interior points of the basin can improve the hydrological models according to the particular location of the sensors and hydrological model structure. It is also found that appropriate definition of the observation accuracy can affect model performance and consequent flood forecasting. These findings can be used as criteria to develop methods for streamflow monitoring network design.  相似文献   
243.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   
244.
Water quality in streams is determined by several factors, including geology, topography, climate, and anthropogenic changes. This study aimed to assess the effects of watershed physical, morphology, and precipitation seasonality on the water quality of two streams that supply drinking water to rural settlements and urban areas in the Cerrado-Amazonia transition region. We monitored 16 physico-chemical attributes of water at six different sample locations over three years (2013–2016). Our results indicate that eight of these physico-chemical attributes did not meet the standards for safe drinking water established by Brazilian legislation. Precipitation seasonality, degradation of riparian zones, stream length, and watershed slope were the most important predictors of impaired water quality. Our results highlight the importance of restoring and conserving riparian forests in order to maintain drinking water quality.  相似文献   
245.
Geostatistical seismic inversion methods are routinely used in reservoir characterisation studies because of their potential to infer the spatial distribution of the petro‐elastic properties of interest (e.g., density, elastic, and acoustic impedance) along with the associated spatial uncertainty. Within the geostatistical seismic inversion framework, the retrieved inverse elastic models are conditioned by a global probability distribution function and a global spatial continuity model as estimated from the available well‐log data for the entire inversion grid. However, the spatial distribution of the real subsurface elastic properties is complex, heterogeneous, and, in many cases, non‐stationary since they directly depend on the subsurface geology, i.e., the spatial distribution of the facies of interest. In these complex geological settings, the application of a single distribution function and a spatial continuity model is not enough to properly model the natural variability of the elastic properties of interest. In this study, we propose a three‐dimensional geostatistical inversion technique that is able to incorporate the reservoir's heterogeneities. This method uses a traditional geostatistical seismic inversion conditioned by local multi‐distribution functions and spatial continuity models under non‐stationary conditions. The procedure of the proposed methodology is based on a zonation criterion along the vertical direction of the reservoir grid. Each zone can be defined by conventional seismic interpretation, with the identification of the main seismic units and significant variations of seismic amplitudes. The proposed method was applied to a highly non‐stationary synthetic seismic dataset with different levels of noise. The results of this work clearly show the advantages of the proposed method against conventional geostatistical seismic inversion procedures. It is important to highlight the impact of this technique in terms of higher convergence between real and inverted reflection seismic data and the more realistic approximation towards the real subsurface geology comparing with traditional techniques.  相似文献   
246.
Base-salt relief influences salt flow, producing three-dimensionally complex strains and multiphase deformation within the salt and its overburden. Understanding how base-salt relief influences salt-related deformation is important to correctly interpret salt basin kinematics and distribution of structural domains, which have important implications to understand the development of key petroleum system elements. The São Paulo Plateau, Santos Basin, Brazil is characterized by a >2 km thick, mechanically layered Aptian salt layer deposited above prominent base-salt relief. We use 3D seismic reflection data, and physical and conceptual kinematic models to investigate how gravity-driven translation above thick salt, underlain by complex base-salt relief, generated a complex framework of salt structures and minibasins. We show that ramp-syncline basins developed above and downdip of the main pre-salt highs record c. 30 km of Late Cretaceous-Paleocene basinward translation. As salt and overburden translated downdip, salt flux variations caused by the base-salt relief resulted in non-uniform motion of the cover, and the simultaneous development of extensional and contractional structures. Contraction preferentially occurred where salt flow locally decelerated, above landward-dipping base-salt and downdip of basinward-dipping ramps. Extension occurred at the top of basinward-dipping ramps and base-salt plateaus, where salt flow locally accelerated. Where the base of the salt layer was broadly flat, structures evolved primarily by load-driven passive diapirism. At the edge of or around smaller base-salt highs, salt structures were affected by plan-view rotation, shearing and divergent flow. The magnitude of translation (c. 30 km) and the style of salt-related deformation observed on the São Paulo Plateau afford an improved kinematic model for the enigmatic Albian Gap, suggesting this structure formed by a combination of basinward salt expulsion and regional extension. These observations contribute to the long-lived debate regarding the mechanisms of salt tectonics on the São Paulo Plateau, ultimately improving our general understanding of the effects of base-salt relief on salt tectonics in other basins.  相似文献   
247.
Tsunami deposits present an important archive for understanding tsunami histories and dynamics. Most research in this field has focused on onshore preserved remains, while the offshore deposits have received less attention. In 2009, during a coring campaign with the Italian Navy Magnaghi, four 1 m long gravity cores (MG cores) were sampled from the northern part of Augusta Bay, along a transect in 60 to 110 m water depth. These cores were taken in the same area where a core (MS06) was collected in 2007 about 2·3 km offshore Augusta at a water depth of 72 m below sea level. Core MS06 consisted of a 6·7 m long sequence that included 12 anomalous intervals interpreted as the primary effect of tsunami backwash waves in the last 4500 years. In this study, tsunami deposits were identified, based on sedimentology and displaced benthic foraminifera (as for core MS06) reinforced by X-ray fluorescence data. Two erosional surfaces (L1 and L2) were recognized coupled with grain-size increase, abundant Posidonia oceanica seagrass remains and a significant amount of Nubecularia lucifuga, an epiphytic sessile benthic foraminifera considered to be transported from the inner shelf. The occurrence of Ti/Ca and Ti/Sr increments, coinciding with peaks in organic matter (Mo incoherent/coherent) suggests terrestrial run-off coupled with an input of organic matter. The L1 and L2 horizons were attributed to two distinct historical tsunamis (ad 1542 and ad 1693) by indirect age-estimation methods using 210Pb profiles and the comparison of Volume Magnetic Susceptibility data between MG cores and MS06 cores. One most recent bioturbated horizon (Bh), despite not matching the above listed interpretative features, recorded an important palaeoenvironmental change that may correspond to the ad 1908 tsunami. These findings reinforce the value of offshore sediment records as an underutilized resource for the identification of past tsunamis.  相似文献   
248.
Fish assemblages in an insular (preserved) and a continental (disturbed) sandy beach were compared to assess any changes that could be attributed to anthropogenic influences and/or the proximity of the fish spawning grounds. We expected that the closer geographical position to the spawning grounds and the small amount of anthropogenic disturbance on the insular beach would be likely to provide more suitable conditions for early fish development compared with the continental beach. A total of 192 samples (96 in each beach) were taken, yielding 68 fish species, mostly young‐of‐the‐year. Fish assemblage structure differed significantly between the two beaches. Moreover, the insular beach had higher number of species, number of individuals and biomass compared with the continental beach. The commercially important Clupeiformes Harengula clupeola, Anchoa tricolor and Anchoa januaria, Perciformes Micropogonias furnieri and Mugiliformes Mugil liza were typical species on the insular beach, partitioning the seasonal use of the beach. On the other hand, a few abundant non‐commercial species, mainly the Atheriniformes Atherinella brasiliensis and the Perciformes Eucinostomus argenteus and Diapterus rhombeus, occurred all year round at the continental beach. The high fish richness and abundance and the more conspicuous species turnover across seasons on the insular beach are probable indications of more complex and dynamic organization of the communities favored by better geographical position and less anthropogenic disturbance in the area.  相似文献   
249.
Rainfall is one of the primary triggers for many geological and hydrological natural disasters. While the geological events are related to mass movements in land collapse due to waterlogging, the hydrological ones are usually assigned to runoff or flooding. Studies in the literature propose predicting mass movement events as a function of accumulated rainfall levels recorded at distinct periods. According to these approaches, a two-dimensional rainfall levels feature space is segmented into the occurrence and non-occurrence decision regions by an empirical critical curve (CC). Although this scheme may easily be extended to other purposes and applications, studies in the literature need to discuss its use for flooding prediction. In light of this motivation, the present study is unfolded in (1) verifying that defining CCs in the rainfall levels feature space is a practical approach for flooding prediction and (2) analyzing how geospatial components interact with rainfall levels and flooding prediction. A database containing the rainfall levels recorded for flooding and non-flooding events in São Paulo city, Brazil, regarding the period 2015–2016, was considered in this study. The results indicate good accuracy for flooding prediction using only partial rain, which can be improved by adding physical characteristics of the flooding locations, demonstrating a direct correlation with spatial interactions, and rainfall levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号