首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   10篇
  国内免费   1篇
测绘学   1篇
大气科学   22篇
地球物理   64篇
地质学   84篇
海洋学   13篇
天文学   19篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   13篇
  2017年   7篇
  2016年   12篇
  2015年   14篇
  2014年   16篇
  2013年   24篇
  2012年   6篇
  2011年   16篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
81.
The Strait of İstanbul (SoI) (Bosphorus) is a narrow valley, which has evolved tectonically from a stream, and in which thick sediment deposits have accumulated in the course of its evolution. Detailed seismic and multi-beam bathymetric data have revealed that the upper parts of the deeper channel deposits consist of parallel strata, which have mostly been eroded subsequently to their deposition. The resulting erosion surface is represented by the present channel floor in the strait, the estimated volume of the eroded material being approximately 2×108 m3 . Erosion rate and seafloor morphology indicate that the flow direction was from the south to the north. This inner channel may have been formed by an abrupt flooding of the Black Sea by Mediterranean waters at the beginning of the latest connection between the Marmara and the Black seas. Subsequently, the Mediterranean bottom current of the modern two-way flow system, which was established at about 5–4 ka b.p., has given the latest shape to the strait floor.  相似文献   
82.
83.
The Upper Cretaceous Torul pluton, located in the Eastern Pontides, is of sub-alkaline affinity and displays features typical of volcanic arc granitoids. It is a composite pluton consisting of granodiorite, biotite hornblende monzogranite, quartz monzodiorite, quartz monzonite and hornblende biotite monzogranite. The oldest syenogranite (77.9 ± 0.3 Ma) and the youngest quartz diorite form small stocks within the pluton. Samples from the granodiorites, biotite hornblende monzogranites, quartz monzodiorites, quartz monzonites and hornblende biotite monzogranites have SiO2 between 57 and 68 wt% and display high-K calc-alkaline, metaluminous to peraluminous characteristics. Chondrite-normalized REE patterns are fractionated (Lacn/Lucn = 6.0?14.2) with pronounced negative Eu anomalies (Eu/Eu* = 0.59–0.84). Initial ?Nd(i) values vary between ?3.1 and ?4.1, initial 87Sr/86Sr values between 0.7058 and 0.7072, and δ18O values between +4.4 and +7.3‰. The quartz diorites are characterized by relatively high Mg-number of 36–38, low contents of Na2O (2.3–2.5 wt%) and SiO2 (52–55 wt%) and medium-K calc-alkaline, metaluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn =  2.8–3.3; (Tb/Yb)cn =  1.2] and show small negative Eu anomalies (Eu/Eu* = 0.74–0.76). Compared to the other rock types, radiogenic isotope signatures of the quartz diorites show higher 87Sr/86Sr (0.7075–0.7079) and lower ?Nd(i) (–4.5 to –5.3). The syenogranites have high SiO2 (70–74 wt%) and display high-K calc-alkaline, peraluminous characteristics. Their REE patterns are characterized by higher Lacn/Lucn (12.9) and Eu/Eu* (0.76–0.77) values compared to the quartz diorites. Isotopic signatures of these rocks [?Nd(i) =  ?4.0 to ?3.3; 87Sr/86Sr(i) =  0.7034?0.7060; δ18 O =  + 4.9 to + 8.2] are largely similar to the other rock types but differ from that of the quartz diorites. Fractionation of plagioclase, hornblende, pyroxene and Fe–Ti oxides played an important role in the evolution of Torul granitoids. The crystallization temperatures of the melts ranged from 800 to 900°C as determined from zircon and apatite saturation thermometry. All these characteristics, combined with low K2O/Na2O, low Al2O3/(FeOT + MgO + TiO2), and low (Na2O + K2O)/(FeOT + MgO + TiO2) ratios suggest an origin through dehydration melting of mafic lower crustal source rocks.  相似文献   
84.
In central eastern Anatolia which is located between Eurasia and Africa, the study of basin developments between late Eocene and early Miocene is of great importance for understanding the process of the closure of the Neo-Tethys Ocean and the formation of strike-slip faults and regional uplift. To study these, three basins were selected: the Sivas-Erzincan, Gürün-Akkisla-Divrigi (GAD), and Malatya basins. The study proposes that the opening of the GAD basin played a key role in the formation of the Ecemis fault, which started developing at the end of early Miocene, and in mountain uplift. All these basins are situated on continental blocks and oceanic crust, arranged from north to south as the Sakarya continent, the Izmir-Ankara-Erzincan ocean (Northern Neo-Tethys), the Kirsehir continent, the inner Tauride ocean, the Munzur-Binboga block, the Maden (=Berit) ocean, the Bitlis-Pütürge block, the Çüngüs ocean and the Arabian continent.The findings indicate that late Eocene-early Miocene successions in these basins were not deposited in foreland basins formed in front of the thrust faults associated with the closure of the ocean, as stated in previous studies. Rather, they were deposited in forearc and backarc basins related to the subduction which was effective until the end of early Miocene. The Sivas-Erzincan and Malatya basins, located on the inner Tauride and Maden (=Berit) oceans, were forearc basins, while the GAD basin situated on the Munzur-Binboga block was a backarc basin. These basins have parallel developments up to the end of early Miocene. While marine sediments were deposited in the Malatya and Sivas-Erzincan basins between late Eocene and early Miocene, terrestrial units began to settle in the GAD basin from the late Eocene and the deposition there is continuous until the end of the early Miocene.Collision of the Arabian and the Anatolian plates at the end of early Miocene (16-18 Ma) produced the left-strike slip Ecemis fault zone, which caused the lateral slip of sedimentary units in the Sivas-Erzincan and GAD basins over hundreds of kilometers. This event produced the first westward tectonic escape of the Anatolian plate prior to the north Anatolian fault (NAF) and the east Anatolian fault (EAF). The Gürün region located in the GAD basin was exhumed in late Miocene and this basin was broken. The Gürün region, which remains on the rising part of the Munzur-Binboga block, is not a different basin as stated earlier, but it is a part of the GAD basin, representing the central part of the GAD basin lake, as indicated by the fine grained deposits (limestones and clay) that occur in the Gürün area.  相似文献   
85.
86.
ABSTRACT

Because of the late withdrawal of the Levantine lake waters and because of low relief the Eastern Romanian Plain was fragmented only by big alochthonous rivers (Ialomi?a, C?lm??ui and Buz?u).

The tabular-like, 40–50-km-wide interfluve areas covered by loessoid deposits and eolian sands on the periphery are deprived of surface drainage which accounts for their present evolution.

The major relief forms in these interfluves are depressions called in Romanian ‘crov’ (sink-holes) in the central areas and short valleys formed initially by erosion processes and now modelled by mechanical and chemical weathering at their periphery: in these depressions (sink-holes) and in the secondary valleys, peripheral to the interfluve areas, lakes had started to be formed.

Because of the semiarid climate sink-hole lakes have an intermittent hydrological regime, whereas those located in the small fluviatile liman-type valleys, enjoy a permanent regime. By the absence of surface drainage, by the loss of significant amounts of water through evaporation and the degree of mineralization, these lakes fall within the group of salt lakes.

In the past few years (since 1966 and especially since 1969) the level of these lakes has continually risen and the depressions formerly lacking water started being flooded by the rising of the piezometric level.

An analysis was made of the water balance of the Amara-Ialomi?a lake to investigate this phenomenon.

Level and evaporation recordings were made in the period 1956–1970. The findings revealed that the supply of underground water to the lake amounts to 47·3 per cent exceeding the water supply produced by the rains that fell on the surface of the lake (46·7 per cent). A close relationship was established (with a lapse of 8–12 months) between the surface supply of the basin (through rainfalls) and the flow of underground water to the lake.

Extending the precipitation-induced level changes over a longer period (1896–1915 and 1921–1970) it was found that level increases are cyclic, as a direct consequence of the corresponding precipitation regime.  相似文献   
87.
88.
A. Altunkaynak  Z. Şen 《水文研究》2011,25(11):1778-1783
Darcian flow law in aquifers assumes that the aquifer hydraulic conductivity is constant and the groundwater movement is due only to the piezometric level changes through hydraulic gradient. In practice, after the well development the aquifer just around the well has comparatively larger hydraulic conductivity and gradient. Patchy aquifer solutions in the literature consider sudden hydraulic conductivity changes with distance for the steady state flow. The change of transmissivity is demonstrated by the application of slope‐matching procedure to actual field data. It is the main purpose of this paper to derive simple analytical expressions for aquifer parameter evaluations with steadily decreasing hydraulic conductivity around the well. Spatial nonlinear hydraulic conductivity changes around a large‐diameter well within the depression cone of a confined aquifer are considered as exponentially decreasing functions of the radial distance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
89.
A multi‐disciplinary approach was followed to investigate two thick palaeosol strata that alternate with wind‐blown dominated deposits developed along the Alghero coast (North‐west Sardinia, Italy). Optically stimulated luminescence ages reveal that both palaeosols were developed during cooler drier periods: the first one at around 70 ka Marine Isotope Stage 4 and the latter around 50 ka (Marine Isotope Stage 3). In contrast, the pedological features indicate that the palaeosols underwent heavy weathering processes under warm humid to sub‐humid conditions, characteristic of the Sardinian climate during the last interglacial stage (Marine Isotope Stage 5e). To reconcile this apparent data discrepancy, a range of sedimentological and pedological analyses were conducted. These analyses reveal that the palaeosols possess a complex history, with accumulation and weathering occurring during Marine Isotope Stage 5e, and erosion, colluviation and final deposition taking place during the following cold stages. Thus, even if these reddish palaeosols were last formed during the glacial period, the sediments building up these strata probably record the climate of the last interglacial stage (Marine Isotope Stage 5e). Trace element and X‐ray diffraction analyses, together with scanning electron microscope images, reveal the presence of Saharan dust in the parent material of the palaeosols. However, no evidence of any far‐travelled African dust has been observed in the Marine Isotope Stage 4–3 aeolian deposits. It is possible to conclude that in the West Mediterranean islands, Saharan dust input, even if of modest magnitude, is preserved preferentially in soils accumulated and weathered during interglacial stages.  相似文献   
90.
This study presents new photometric observations of classical Algol type binary BG Peg with a δ Scuti component. The light curve modeling was provided with the physical parameters of the component stars in the BG Peg system for the first time. After modeling light curves in B and V filters, the eclipse and proximity effects were removed from the light curve to analyze intrinsic variations caused by the hotter component of the system. Frequency analysis of the residuals light represents the multi-mode pulsation of the more massive component of the BG Peg system at periods of 0.039 and 0.047 days. Two frequencies could be associated with non-radial (l = 2) modes. The total amplitude of the pulsational variability in the V light curve was found to be about 0.045 mag. The long-term orbital period variation of the system was also investigated for the first time. The OC analysis indicates periodic variation superimposed on a downward parabola. The secular period variation means that the orbital period of the system is decreasing at a rate of ?5.5 seconds per century, probably due to the magnetic activity of the cooler component. The tilted sinusoidal OC variation may be caused by the gravitational effect of an unseen component around the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号