首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   32篇
测绘学   9篇
大气科学   28篇
地球物理   142篇
地质学   198篇
海洋学   66篇
天文学   202篇
综合类   4篇
自然地理   80篇
  2021年   8篇
  2020年   11篇
  2019年   7篇
  2018年   10篇
  2017年   13篇
  2016年   27篇
  2015年   20篇
  2014年   11篇
  2013年   35篇
  2012年   29篇
  2011年   17篇
  2010年   27篇
  2009年   29篇
  2008年   21篇
  2007年   24篇
  2006年   24篇
  2005年   27篇
  2004年   42篇
  2003年   22篇
  2002年   27篇
  2001年   21篇
  2000年   18篇
  1999年   9篇
  1998年   15篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   8篇
  1989年   7篇
  1987年   5篇
  1985年   8篇
  1984年   11篇
  1983年   8篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   13篇
  1977年   7篇
  1975年   7篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
  1971年   4篇
  1968年   5篇
  1966年   3篇
排序方式: 共有729条查询结果,搜索用时 15 毫秒
101.
In this paper we present two methods to derive electron fluid parameters from the CAPS–ELS spectrometer on board the Cassini spacecraft currently in orbit around Saturn. In the first part of the paper we give a basic overview of the instrument and describe the challenges inherent in the derivation of density and temperature values using these techniques. We then describe a method to calculate electron moments by integrating the particle distribution function. We also describe a second technique in which we fit the electron energy spectrum with a Gaussian curve and use the peak energy of this curve to derive density and temperature values. We then compare the two methods with particular emphasis on their application to Cassini SOI observations in the saturnian environment and point out the limitations of the two techniques. We will show that results from the two very different methods are in agreement when the physical properties of the environment and of the observed electron populations have been inferred from inspection of the raw data. Finally we will suggest future developments that will remove these limitations.  相似文献   
102.
103.
South Australia’s State Heritage Register contains 2294 listed places, the majority of which are from the ‘Built’ environment, ranging from settlers’ huts, community buildings, historical industrial sites to magnificent stone mansions. Only 96 places are linked to the ‘Natural’ environment. The Register listings protect heritage places from alteration, damage or removal without formal prior consultation, compulsory under the South Australian Development Act. ‘Natural’ environments are landscape-based and oriented towards Geological, Archaeological, Palaeontological and Speleological heritage (‘GAPS heritage’). A process to provide a greater balance between ‘Natural’ and ‘Built’ listings has initiated a series of State Heritage ‘Natural’ environment assessments, mostly of single sites. Two individual caves in the Naracoorte Caves National Park are already entered in the State Heritage Register as single sites. However, an innovative broader multiple-site nomination has focused on the many different but significant GAPS features contained within the 25 caves of the Naracoorte Caves National Park, providing a further level of protection for the land and the caves’ exteriors and interiors. The example of the Naracoorte Caves draws attention to the number of important land and coastal karst (limestone) features across South Australia that were generated by steady geological uplift of three large sections of Oligocene–Miocene limestone—the Nullarbor Plain, the Murray Basin and the Gambier Karstfield (which includes Naracoorte and Mount Gambier), resulting in specific karst forms worthy of a broader coordinating management approach across South Australian karst parks.  相似文献   
104.
Active wildfire seasons in the western U.S. warrant the evaluation of post-fire forest management strategies. Ground-based salvage logging is often used to recover economic loss of burned timber. In unburned forests, ground-based logging often follows best management practices by leaving undisturbed areas near streams called stream buffers. However, the effectiveness of these buffers has not been tested in a post-wildfire setting. This experiment tested buffer width effectiveness with a novel field-simulated rill experiment using sediment-laden runoff (25 g/L) released over 40 min at evenly timed flow rates (50, 100 and 150 L/min) to measure surface runoff travel length and sediment concentration under unburned and high and low soil burn severity conditions at 2-, 10- and 22-month post-fire. High severity areas 2-month post-fire had rill lengths of up to 100 m. Rill length significantly decreased over time as vegetation regrowth provided ground cover. Sediment concentration and sediment dropout rate also varied significantly by soil burn severity. Sediment concentrations were 19 g/L for the highest flow 2-month post-fire and reduced to 6.9–14 g/L 10-month post-fire due to abundant vegetation recovery. The amount of sediment dropping out of the flow consistently increased over the study period with the low burn severity rate of 1.15 g L−1 m−1 approaching the unburned rate of 1.29 g L−1 m−1 by 2-year post-fire. These results suggest that an often-used standard, 15 m buffer, was sufficient to contain surface runoff and reduce sediment concentration on unburned sites, however buffers on high burn severity sites need to be eight times greater (120 m) immediately after wildfire and four times greater (60 m) 1-year post-fire. Low burn severity areas 1-year post-fire may need to be only twice the width of an unburned buffer (30 m), and 2-year post-fire these could return to unburned widths.  相似文献   
105.
106.
Continuing long and extensive wildfire seasons in the Western US emphasize the need for better understanding of wildfire impacts including post-fire management scenarios. Advancements in our understanding of post-fire hillslope erosion and watershed response such as flooding, sediment yield, and debris flows have recently received considerable attention. The potential impacts of removing dead trees, called salvage logging, has been studied, however the use of remotely sensed imagery after salvage logging to evaluate spatial patterns and recovery is novel. The 2015 North Star Fire provided an opportunity to evaluate hillslope erosion reduction using two field experiments and coincidental remotely sensed imagery over 3 years. Simulated rill experiments with four flow rates were used to quantify hillslope erosion on skidder trails with and without added logging slash compared with a burned-only control. Seven replicated hillslope silt fence plots with the same treatments were also evaluated for natural rainfall events. WorldView-2 satellite imagery was used to relate ground cover and erodible bare soil between the two experiments using multi-temporal Normalized Differenced Vegetation Index (NDVI) values. Results indicate that the skid trails produced significantly more sediment (0.70 g s−1) than either the slash treated skid trail (0.34 g s−1) or controls (0.04 g s−1) with the simulated rill experiment. Similarly, under natural rainfall conditions sediment yield from hillslope silt fence plots was significantly greater for the skid trail (3.42 Mg ha−1) than either the slash treated skid trail (0.18 Mg ha−1) or controls (0 Mg ha−1). An NDVI value of 0.32 on all plots over all years corresponded to a ground cover of about 60% which is an established threshold for erosion reduction. Significant relationships between NDVI, ground cover, and sediment values suggest that NDVI may help managers evaluate ground cover and erosion potential remotely after disturbances such as a wildfire or salvage logging.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号