首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3429篇
  免费   599篇
  国内免费   879篇
测绘学   163篇
大气科学   682篇
地球物理   940篇
地质学   1812篇
海洋学   409篇
天文学   214篇
综合类   314篇
自然地理   373篇
  2024年   12篇
  2023年   60篇
  2022年   129篇
  2021年   154篇
  2020年   120篇
  2019年   163篇
  2018年   184篇
  2017年   161篇
  2016年   196篇
  2015年   178篇
  2014年   193篇
  2013年   198篇
  2012年   196篇
  2011年   191篇
  2010年   159篇
  2009年   192篇
  2008年   185篇
  2007年   163篇
  2006年   151篇
  2005年   156篇
  2004年   105篇
  2003年   107篇
  2002年   91篇
  2001年   124篇
  2000年   130篇
  1999年   180篇
  1998年   137篇
  1997年   166篇
  1996年   129篇
  1995年   94篇
  1994年   110篇
  1993年   85篇
  1992年   62篇
  1991年   34篇
  1990年   50篇
  1989年   29篇
  1988年   35篇
  1987年   20篇
  1986年   17篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   13篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1965年   1篇
  1958年   5篇
排序方式: 共有4907条查询结果,搜索用时 140 毫秒
151.
152.
Based on relevant experimental data of a petroleum cement paste under mechanical loading and chemical leaching, an elastic‐plastic model is first proposed by taking into account plastic shearing and pore collapse. The degradation of mechanical properties induced by the chemical leaching is characterized by a chemical damage variable which is defined as the increase of porosity. Both elastic and plastic properties of the cement paste are affected by the chemical damage. The proposed model is calibrated from and applied to describe mechanical responses in triaxial compression tests respectively on sound and fully leached samples. In the second part, a phenomenological chemical model is defined to establish the relationship between porosity change and calcium dissolution process. The dissolution kinetics is governed by a diffusion law taking into account the variation of diffusion coefficient with calcium concentration. The chemical model is coupled with the mechanical model, and both are applied to describe mechanical response of cement paste samples subjected to progressive chemical leaching and compressive stresses. Comparisons between experimental data and numerical results are presented.  相似文献   
153.
154.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   
155.
Recognition of positions of glacial lakes along the margin of continental ice sheets is critical in reconstructing ice configuration during deglaciation. Advances in remote sensing technology (e.g. LiDAR) have enabled the generation of accurate digital‐elevation models (DEMs) that reveal unprecedented geomorphic detail. Combined with geographical information systems, these tools have considerably advanced the mapping and correlation of geomorphic features such as relict shorelines. Shorelines of glacial Lake Peace (GLP) developed between the Laurentide and Cordilleran ice sheets in northeastern British Columbia and northwestern Alberta. Shoreline mapping from high resolution DEMs produced more than 55 500 elevation data points from 3231 shorelines, enabling the identification of four major phases of GLP: Phase I (altitude 960–990 m a.s.l.); Phase II (890–915 m a.s.l.); Phase III (810–865 m a.s.l.); and Phase IV (724–733 m a.s.l.). The timing of Phase II of GLP is estimated by two optical ages of <16.0±2.5 and 14.2±0.5 ka BP. Extensive mapping of the shorelines allows for measuring of glacial isostatic adjustment as ice retreated. Shorelines currently dip to the northeast at around 0.4–0.5 m km?1. This slope reflects the asynchronous retreat of the Cordilleran (CIS) and Laurentide (LIS) ice sheets. The relative uplift in the southwest of the study area within the Rocky Mountains and foothills suggests that the Late Wisconsinan (MIS 2) CIS persisted in the foothill after the LIS lost mass and retreated, or that the Late Wisconsinan CIS was very thick and caused deep crustal loading, which resulted in more uplift in the southwest before reaching equilibrium during, or shortly after deglaciation.  相似文献   
156.
157.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
158.
Pressure measurements using drill stem tests and estimates from log data calculation indicate that three vertically stacked regional pressure compartments exist in the Qikou Depression of Bohai Bay Basin, N. China. The compartments comprise hydrostatic, upper weak, and lower overpressure systems. Laterally, overpressure (pressure coefficient > 1.2) occurs in the deeper areas and weakens gradually from the centre to the margin of the depression. The accumulation of oil and gas exhibits the interesting characteristics of oil‐bearing layers above gas‐bearing layers in the Qikou Depression. The pattern can be accounted for by the evolution of overpressure system, the maturity process of the source rock and the main fault activity. In the late Dongying Formation (Ed, 30 Ma), the lower overpressure system began to form shape, and the hydrocarbon sources generated a large volume of oil. However, because there was no migration pathway, the oil only accumulated in the original strata. In the late Guantao Formation (Ng, 12 Ma), the gas was generated, the upper overpressure system formed gradually, and the activity of the main fault gradually increased. Then, the overpressure pushed the early gathered oil to flow from the lower overpressure system into the upper overpressure system. Afterwards, the activity of the main fault decreased again and remains weak until now. Thus, later generated natural gas cannot keep migrating along the main fault and can only accumulate in the lower overpressure system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
159.
The integration of Sensor Web Enablement services with other Open Geospatial Consortium (OGC) Web Services as Geospatial Processing Workflows (GPW) is essential for future Sensor Web application scenarios. With the help of GPW technology, distributed and heterogeneous OGC Web Services can be organized and integrated as compound Web Service applications that can direct complicated earth observation tasks. Under the Sensor Web environment, asynchronous communications between Sensor Web Services are common. We have proposed an asynchronous GPW architecture for the integration of Sensor Web Services into a Web Service Business Process Execution Language workflow technology. We designed a Sensor Information Accessing and Processing workflow, an asynchronous GPW instance, to take an experiment of observing and mapping ozone over Antarctica. Based on our results, our proposed asynchronous workflow method shows the advantages of taking environmental monitoring and mapping tasks.  相似文献   
160.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号