首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   15篇
地质学   20篇
海洋学   3篇
天文学   5篇
自然地理   1篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1963年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
21.
22.
First-principles calculations have been used to determine the equation of state of Fe3C in both its low-pressure magnetically ordered and high-pressure non-magnetically ordered states; at 0 K the ferromagnetic transition was found to occur at about 60 GPa. In the high pressure, non-magnetically ordered regime at 0 K the material may be described by a Birch-Murnaghan third-order equation of state with V0=8.968(7) Å3 per atom, K0=316.62(2) GPa and K′=4.30(2). At atmospheric pressure the ferromagnetic phase transition in Fe3C occurs at ∼483 K; preliminary measurements of the thermal expansion by powder neutron diffraction show that this transition produces a large effect on thermoelastic properties. The volumetric thermal expansion coefficient in the paramagnetic phase was found to be 4.34×10−5 K−1 at T∼550 K. By applying a thermal expansion correction to the calculated equation of state at 0 K, predicted values for the density and adiabatic incompressibility of this material at core pressures and temperatures were obtained. These results appear to be sufficiently different from seismological data so as to preclude Fe3C as the major inner core-forming phase.  相似文献   
23.
A study of dayside auroral conjugacy has been done using the cleft/boundary layer auroral particle boundaries observed by the DMSP-F7 satellite in the southern hemisphere and the global UV auroral images taken by the Viking spacecraft in the northern hemisphere. The 22 events have been studied on the basis of an internal IGRF 1985 magnetic field; it is shown that there is a displacement of up to 4° in latitude from the conjugate points with the northern aurora appearing to be located poleward of the conjugate point. No local time dependence of the north-south auroral location difference was seen. The use of a more realistic magnetic field model for tracing field lines which incorporates the dipole tilt angle and Kp index, the Tsyganenko 1987 long model plus the IGRF 1985 internal magnetic field model, appears to organize the data better. Although with this external plus internal model some tracings did not close in the opposite hemisphere, 70% of those that did indicated satisfactory conjugacy. The study shows that the degree of auroral conjugacy is dependent upon the accuracy of the magnetic field model used to trace to the conjugate point, especially in the dayside region where the field lines can either go to the dayside magnetopause near the subsolar point or sweep all the way back to the flanks of the magnetotail. Also the discrepancy in the latitude of northern and southern aurora can be partially explained by the displacement of the neutral sheet (source region of the aurora) by the dipole tilt effect.  相似文献   
24.
3D indoor navigation in multi‐story buildings and under changing environments is still difficult to perform. 3D models of buildings are commonly not available or outdated. 3D point clouds turned out to be a very practical way to capture 3D interior spaces and provide a notion of an empty space. Therefore, pathfinding in point clouds is rapidly emerging. However, processing of raw point clouds can be very expensive, as these are semantically poor and unstructured data. In this article we present an innovative octree‐based approach for processing of 3D indoor point clouds for the purpose of multi‐story pathfinding. We semantically identify the construction elements, which are of importance for the indoor navigation of humans (i.e., floors, walls, stairs, and obstacles), and use these to delineate the available navigable space. To illustrate the usability of this approach, we applied it to real‐world data sets and computed paths considering user constraints. The structuring of the point cloud into an octree approximation improves the point cloud processing and provides a structure for the empty space of the point cloud. It is also helpful to compute paths sufficiently accurate in their consideration of the spatial complexity. The entire process is automatic and able to deal with a large number of multi‐story indoor environments.  相似文献   
25.
26.
Iron sulfide (FeS) was investigated using first-principles calculations up to a pressure of 400 GPa. A number of new phase transitions were found. An antiferromagnetic MnP-type structure, FeS II, was confirmed to be stable at low pressures, whereas at high pressures (40–135 GPa) we find a new stable phase, with a non-magnetic MnP-type structure, FeS VI. The observed first-order change in the cell shape between the two phases can be explained by the difference in magnetic configurations. The calculated cell parameters, atomic coordinates, and bulk modulus of non-magnetic MnP-type phase are consistent with those determined from experiment. The upper pressure limit of the stability of the non-magnetic MnP-type phase was calculated to be 135 GPa. A hitherto unsuspected phase transition from the non-magnetic MnP-type to a phase with Pmmn symmetry, FeS VII, was identified using the evolutionary crystal structure prediction (USPEX) method. The structure of the Pmmn phase has no known analogues, but can be described as a distortion of the NaCl-type structure. The Pmmn phase with the distorted NaCl-type structure is stable from 135 GPa at least up to 400 GPa. According to previous experiments and the present study, the transition sequence of FeS at low temperatures is as follows: troilite ➔ antiferromagnetic MnP-type phase ➔ monoclinic phase ➔ non-magnetic MnP-type phase ➔ Pmmn phase. The calculated volume reduction from the monoclinic to the non-magnetic MnP-type phase is 1.0% at 40 GPa, which is in good agreement with experimental observations. The calculated volume reduction from the non-magnetic MnP-type to the Pmmn phase is 3.7% at 135 GPa.  相似文献   
27.
Water Resources - Surface water quality could be interactively affected by the natural factor (seasonal variation) and human pollution source (industrial, agricultural, and residential sources)....  相似文献   
28.
A new approach based on principal component analysis (PCA) for the representation of complex geological models in terms of a small number of parameters is presented. The basis matrix required by the method is constructed from a set of prior geological realizations generated using a geostatistical algorithm. Unlike standard PCA-based methods, in which the high-dimensional model is constructed from a (small) set of parameters by simply performing a multiplication using the basis matrix, in this method the mapping is formulated as an optimization problem. This enables the inclusion of bound constraints and regularization, which are shown to be useful for capturing highly connected geological features and binary/bimodal (rather than Gaussian) property distributions. The approach, referred to as optimization-based PCA (O-PCA), is applied here mainly for binary-facies systems, in which case the requisite optimization problem is separable and convex. The analytical solution of the optimization problem, as well as the derivative of the model with respect to the parameters, is obtained analytically. It is shown that the O-PCA mapping can also be viewed as a post-processing of the standard PCA model. The O-PCA procedure is applied both to generate new (random) realizations and for gradient-based history matching. For the latter, two- and three-dimensional systems, involving channelized and deltaic-fan geological models, are considered. The O-PCA method is shown to perform very well for these history matching problems, and to provide models that capture the key sand–sand and sand–shale connectivities evident in the true model. Finally, the approach is extended to generate bimodal systems in which the properties of both facies are characterized by Gaussian distributions. MATLAB code with the O-PCA implementation, and examples demonstrating its use are provided online as Supplementary Materials.  相似文献   
29.
The UNEP/GEF project entitled “Reversing environmental degradation trends in the South China Sea and Gulf of Thailand” implemented by United Nations Environment Programme (UNEP) in partnership with seven riparian states bordering the South China Sea was initiated in 2002 and completed in 2008. The project was complex since it addressed three priority areas of concern identified in the Transboundary Diagnostic Analysis namely the loss and degradation of coastal habitats, over-exploitation of fisheries, and land-based pollution. The fourth component of the project was concerned with regional co-ordination including facilitation of national level execution and securing inter-country agreement on project related matters. A number of lessons learnt from implementing the project include, inter alia: the need for a well designed management framework to ensure smooth co-ordination and information exchanges among and within participating countries; the importance of individuals in terms of the success or failure of Inter-Ministry Committees at the national level; separation of scientific and technical issues from political decision-making; the importance of the demonstration site network in encouraging cooperation at the local level; ownership of the project by participating countries; strong involvement of regional and national experts in implementing project tasks; linkages between habitat and fisheries management for developing a regional fisheries refugia network; sharing data through the development of regional databases; productive services of the project coordinating unit; and development of a framework for long-term cooperation in environment management.  相似文献   
30.
DuneXpress     
The DuneXpress observatory will characterize interstellar and interplanetary dust in-situ, in order to provide crucial information not achievable with remote sensing astronomical methods. Galactic interstellar dust constitutes the solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with DuneXpress in Earth orbit will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Hence DuneXpress will provide insights into the physical conditions during planetary system formation. This comparison of interstellar and interplanetary dust addresses directly themes of highest priority in astrophysics and solar system science, which are described in ESA’s Cosmic Vision. The discoveries of interstellar dust in the outer and inner solar system during the last decade suggest an innovative approach to the characterization of cosmic dust. DuneXpress establishes the next logical step beyond NASA’s Stardust mission, with four major advancements in cosmic dust research: (1) analysis of the elemental and isotopic composition of individual interstellar grains passing through the solar system, (2) determination of the size distribution of interstellar dust at 1 AU from 10 − 14 to 10 − 9 g, (3) characterization of the interstellar dust flow through the planetary system, (4) establish the interrelation of interplanetary dust with comets and asteroids. Additionally, in supporting the dust science objectives, DuneXpress will characterize dust charging in the solar wind and in the Earth’s magnetotail. The science payload consists of two dust telescopes of a total of 0.1 m2 sensitive area, three dust cameras totaling 0.4 m2 sensitive area, and a nano-dust detector. The dust telescopes measure high-resolution mass spectra of both positive and negative ions released upon impact of dust particles. The dust cameras employ different detection methods and are optimized for (1) large area impact detection and trajectory analysis of submicron sized and larger dust grains, (2) the determination of physical properties, such as flux, mass, speed, and electrical charge. A nano-dust detector searches for nanometer-sized dust particles in interplanetary space. A plasma monitor supports the dust charge measurements, thereby, providing additional information on the dust particles. About 1,000 grains are expected to be recorded by this payload every year, with 20% of these grains providing elemental composition. During the mission submicron to micron-sized interstellar grains are expected to be recorded in statistically significant numbers. DuneXpress will open a new window to dusty universe that will provide unprecedented information on cosmic dust and on the objects from which it is derived.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号