首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6540篇
  免费   590篇
  国内免费   164篇
测绘学   296篇
大气科学   698篇
地球物理   2221篇
地质学   2534篇
海洋学   375篇
天文学   591篇
综合类   190篇
自然地理   389篇
  2022年   12篇
  2021年   21篇
  2020年   16篇
  2019年   23篇
  2018年   462篇
  2017年   403篇
  2016年   285篇
  2015年   172篇
  2014年   136篇
  2013年   198篇
  2012年   692篇
  2011年   476篇
  2010年   168篇
  2009年   195篇
  2008年   190篇
  2007年   169篇
  2006年   169篇
  2005年   873篇
  2004年   908篇
  2003年   689篇
  2002年   212篇
  2001年   94篇
  2000年   84篇
  1999年   39篇
  1998年   28篇
  1997年   37篇
  1996年   31篇
  1995年   22篇
  1994年   14篇
  1993年   22篇
  1992年   19篇
  1991年   23篇
  1990年   34篇
  1989年   20篇
  1988年   19篇
  1987年   22篇
  1986年   12篇
  1985年   15篇
  1984年   22篇
  1983年   28篇
  1982年   18篇
  1981年   16篇
  1980年   18篇
  1977年   11篇
  1976年   14篇
  1975年   18篇
  1974年   10篇
  1973年   12篇
  1972年   19篇
  1971年   12篇
排序方式: 共有7294条查询结果,搜索用时 31 毫秒
21.
We develop a physical model of the thermal history of the ureilite parent body (UPB) that numerically tracks the history of its heating, hydration, dehydration, partial melting and smelting as a function of its formation time and the initial values of its composition, formation temperature and water ice content. Petrologic and chemical data from the main group (non-polymict) ureilite meteorites, which sample the interior of the UPB between depths corresponding to pressures in the range 3-10 MPa, are used to constrain the model. We find that to achieve the ∼30% melting inferred for ureilites from all sampled depths, the UPB must have had a radius between ∼80 and ∼130 km and must have accreted about 0.55 Ma after CAI formation. Melting began in the body at ∼1 Ma after CAI, and the time at which 30% melting was reached varied with depth in the asteroid but was always between ∼4.5 and ∼5.8 Ma after CAI. The total rate at which melt was produced in the UPB varied from more than 100 m3 s−1 in the very early stages of melting at ∼1 Ma after CAI to ∼5 m3 s−1 between 2 and 3 Ma after CAI, decreasing to extremely small values as the end of melting was approached beyond ∼5 Ma. Although the initial period of high melt production occupied only a short time around 1 Ma after CAI, it corresponded to ∼half (16%) of total silicate melting, and all strictly basaltic (i.e. plagioclase-saturated) melts must have been produced during this period.A very efficient melt transport network, consisting of a hierarchy of veins and larger pathways (dikes), developed quickly at the start of melting, ensuring rapid (timescales of months) transport of any single parcel of melt to shallow levels, thus ensuring that chemical interaction between melts and the rocks through which they subsequently passed was negligible. Volatile (mainly carbon monoxide) production due to smelting began at the start of silicate melting in the shallowest parts of the UPB and at later times at greater depths. Except at the very start and very end of melting, the volatile content of the melts produced was always high - generally between 15 and 35 mass % - and most of the melt produced was erupted at the surface of the UPB with speeds well in excess of the escape velocity and was lost into space. However, we show that 30% melting at the 3 MPa pressure level was only possible if ∼15% of the total melt produced in the asteroid was retained as a small number (∼5) of very extensive, sill-like intrusions centered at a depth of ∼7 km below the surface, near the base of the ∼8 km thick outer crust of the asteroid that was maintained at temperatures below the basalt solidus by conductive heat loss to the surface. The horizontal extents of these sills occupied about 75% of the surface area of the UPB, and the sills acted as buffers between the steady supply of melt from depth and the intermittent explosive eruption of the melt into space. We infer that samples from these intrusions are preserved as the rare feldspathic (loosely basaltic) clasts in polymict ureilites, and show that the cooling histories of the sills are consistent with these clasts reaching isotopic closure at ∼5 Ma after CAI, as given by 26Al-26Mg, 53Mn-53Cr and Pb-Pb age dates.  相似文献   
22.
Knowledge of the defect properties of Lunar and Mercurian minerals has recently become important, with the advent of models which attempt to explain the formation of the thin exosphere of these celestial bodies. Here, we have calculated the formation energies of sodium and oxygen vacancies in the mineral albite (NaAlSi3O8), as well as the Schottky defect energy for the removal of a Na2O unit. We have employed both the supercell and Mott–Littleton approaches, using Kohn–Sham density functional theory and classical interatomic potential methods. As well as reporting the defect energies and structures, we comment upon the relative merits of the methods used.  相似文献   
23.
Diel patterns in the chlorophyll a specific absorption coefficient of surface picoplankton, a*pico (γ) (m2·[mg chlorophyll a]−1), were studied at 7 stations under daily cycle of in situ light condition in the western subarctic Pacific and Japan Sea. All the data were normalized by dividing the anomaly with daily averaged a*pico (γ). Opposite diel patterns were observed for the normalized a*pico (443) and a*pico (675) with maximum toward dawn or dusk and minimum toward midday at 4 stations under low-irradiance (LI) conditions and vice versa at 3 stations under high-irradiance (HI) conditions. The absorption efficiency factors at red absorption peak, Q a (675), were determined by reconstruction with intracellular chlorophyll a concentration and cell diameter. The normalized Q a (675) also showed diel pattern with maximum toward midday and minimum toward dawn or dusk under LI. The diel pattern in a*pico (675) and Q a (675) were primarily caused by changes in intracellular chlorophyll a concentration due to photoadaptation under LI. The diel pattern in a*pico (443) was influenced by pigmentation, as recognized by blue to red ratio [a*pico (443)/a*pico (675)] under HI. This study proposed that the opposite diel pattern in a*pico (γ) might occur for a wide range of algal species. The results presented here have important consequences for the interpretation of diel variations in optical properties observed in the open ocean.  相似文献   
24.
The measurements of the vertical transport of CO2 were carried out over the Sea of Japan using the specially designed pier of Kyoto University on September 20 to 22, 2000. CO2 fluxes were measured by the eddy correlation and aerodynamic techniques. Both techniques showed comparable CO2 fluxes during sea breeze conditions: −0.001 to −0.08 mg m−2s−1 with the mean of −0.05 mg m−2s−1. This means that the measuring site satisfies the fetch requirement for meteorological observations under sea breeze conditions. Moreover, the eddy diffusivity coefficient used in the aerodynamic technique is found to be consistent with the coefficient used in the eddy correlation technique. The present result leads us to conclude that the aerodynamic technique may be applicable to underway CO2 flux measurements over the ocean and may be used in place of the bulk technique. The important point is the need to maintain a measuring accuracy of CO2 concentration difference of the order of 0.1 ppmv on the research vessels or the buoys.  相似文献   
25.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
26.
Based on our long-term data from megabenthos sampling from 1993 to 2002 in Ise Bay, central Japan, we examined spatio-temporal variations in taxon composition, species richness and its distribution of megabenthos in the bay in relation to the occurrence of the oxygen-poor water (i.e. oxygen content less than 3 ppm) in bottom waters of the bay. A total of 261 species were identified including 6 cnidarians, 1 tentaculate, 5 annelids, 71 molluscs, 72 crustaceans, 16 echinoderms, 12 urochordates and 78 pisces. Of the most abundant 10 megabenthos species, the following 4 species of echinoderms made up more than the half of megabenthos biomass: Luidia quinaria, Echinocardium cordatum, Asterias amurensis and Astropecten scoparius. Species richness of megabenthos varied significantly between seasons and among stations. The severity and period of occurrence of the oxygen-poor water developing every summer play an important role in determining spatial distributions of species richness in the bay.  相似文献   
27.
We investigated the water structure and nutrient distribution in the Suruga Bay from April 2000 to July 2002, especially the Offshore Water, which occupies a large part of the bay. The maximum salinity in the upper 200 m varied between 34.49 and 34.71, indicating a temporal change in the influence of Kuroshio Water on the Offshore Water. Seasonal variation in nutrient concentrations was largest from surface to 50 m. On the other hand, the variance in nutrient concentrations within each season was largest in the subsurface layer of 100–300 m in spring, summer and fall. In the Offshore Water, the change of nutrients was negatively correlated with that of salinity in each season. This suggests that an increasing intrusion of saline water brings about a lower nutrient concentration in the Offshore Water. Likewise, negative correlations were observed between the change of the maximum salinity and chlorophyll a (Δ [chl.a-int])/nutrients integrated in the upper 200 m. Δ[chl.a-int] was significantly correlated with the changes of nitrate and phosphorus, but there were no significant correlations between Δ[chl.a-int] and the change of silicate. These results suggest that the concentrations of chlorophyll a and nutrients in the Offshore Water were decreased due to the increasing intrusion of Kuroshio Water. The Offshore Water is likely to be related to the regulation of primary production by nitrate.  相似文献   
28.
Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.  相似文献   
29.
Total mass flux, size distribution of sediment particles and some chemical components such as total carbon (TC), total nitrogen (TN) and calcium carbonate (CaCO3) were monitored monthly using a multi-cup sediment traps at seven coral reef sites (6 reef flat and 1 reef slope) of the Marine Protected Areas around Ishigaki, Kohama, Kuroshima and Iriomote Islands in the southern Ryukyus, Japan from September 2000 to September 2001. The size distribution of trapped sediments revealed mostly uni-modal fine sand to mud in the reef flat and gravelly to coarse sand in the reef slope. The total mass flux ranged between 0.54 to 872 gm−2d−1, and showed a pronounced seasonality (high in summer-autumn and low in spring) at each site, which was consistent with the rainfall and typhoon regime. Exceptionally high values were observed on the reef slope (Iriomote) in February–March 2001 (1533 gm−2d−1) owing to a large amount of bottom sediment re-suspension. On the reef flat (Todoroki South and North; Ishigaki), values obtained in July–August 2001 (872 gm−2d−1) and August–September 2001 (800 gm− 2d−1) indicate the high terrestrial discharge from Todoroki River. Trapped sediment particles consist of CaCO3 (1.2–27.1%) and a non-carbonate fraction (98.8–72.9%), which contains total carbon (4.9–26%), carbonate carbon (CO2-C) (0.2–3.1%) and non-carbonate carbon (NC-C) (7.9–25.6%). Total nitrogen content was in the range 0.02–0.48%. TN is contained mainly in the carbonate fraction and NC-C may be contained in the non-carbonate fraction. The low TN/OC ratio of the trapped sediments suggests that they were mostly of terrestrial origin and that both fractions migrated. The high total mass flux derived from Todoroki River exceeded the threshold at which a lethal effect on coral community is caused. The results stress the importance of conducting seasonal studies of sedimentation over more than one year and at more than one location in south Japan coral reef ecosystems to gain an understanding of the processes controlling the total mass fluxes and their nutrients content, also to develop an awareness of how to prevent the damage of coral reef ecosystems and, if it does occur, to allow mitigation measures to be undertaken.  相似文献   
30.
Recent observations suggest that the annual mean southward transport of the East Sakhalin Current (ESC) is significantly larger than the annual mean Sverdrup transport. Motivated by this observational result, transport of a western boundary current has been investigated using a simple numerical model with a western slope. This transport is defined as the instantaneous barotropic transport integrated from the western boundary to the offshore point where the barotropic velocity vanishes. The model, forced by seasonally varying wind stress, exhibits an annual mean of the western boundary current transport that is larger than that of the Sverdrup transport, as observed. The southward transport from October to March in the model nearly equals the instantaneous Sverdrup transport, while the southward transport from April to September decreases slowly. Although the Sverdrup transport in July vanishes, the southward transport in summer nearly maintains the annual mean Sverdrup transport, because the barotropic Rossby wave cannot intrude on the western slope. This summer transport causes the larger annual mean. Although there are some uncertainties in the estimation of the Sverdrup transport in the Sea of Okhotsk, the seasonal variation of the southward transport in the model is qualitatively similar to the observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号