首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   12篇
  国内免费   9篇
测绘学   1篇
地球物理   25篇
地质学   28篇
海洋学   9篇
天文学   1篇
综合类   6篇
自然地理   3篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1992年   1篇
排序方式: 共有73条查询结果,搜索用时 265 毫秒
71.
Strontium in celestine was activated in Twain-40 with the wetting and emulsifying methods. And strontium extract ratio increased providing that the negative effects of oxygen containing functional groups were eliminated on celestine surface. In the paper, the factors affecting the extraction of strontium in celestine were investigated with orthogonal experiments. The optimal conditions were described as follows: mass ratio of celestine to extracting aid=2.6:1, the solid-liquid ratio of extracting aid solvent composed was m(SDS): m(Twain 40): m(HCl)=6:1:2, when celestine was ground as small as less than 0.075mm in size, and extracted for 6 hours at 333K. The strontium extract ratio increased by 61.33% and reached 97.21%, while the ratio from the comparative experiment (without extracting aid agent) was only 35.88%. Extraction kinetics of strontium in celestine showed that the diffusion process was a controlling step, and the apparent active energy was about 14.1 kJ/mol. The research results were helpful to fully utilize strontium of celestine.  相似文献   
72.
According to the current seismic codes, structures are designed to resist the first damaging earthquake during their service life. However, after a strong main shock, a structure may still face damaging aftershocks. The main shock‐aftershock sequence may result in major damage and eventually the collapse of a structure. Current studies on seismic hazard mainly focus on the modeling and simulation of main shocks. This paper proposes a 3‐step procedure to generate main shock‐aftershock sequences of pairs of horizontal components of a ground motion at a site of interest. The first step generates ground motions for the main shock using either a source‐based or site‐based model. The second step generates sequences of aftershocks' magnitudes, locations, and times of occurrence using either a fault‐based or seismicity‐based model. The third step simulates pairs of ground motion components using a new empirical model proposed in this paper. We develop prediction equations for the controlling parameters of a ground motion model, where the predictors are the site condition and the aftershock characteristics from the second step. The coefficients in the prediction equations and the correlation between the model parameters (of the 2 horizontal components of 1 record and of several records in 1 sequence) are estimated using a database of aftershock accelerograms. A backward stepwise deletion method is used to simplify the initial candidate prediction equations and avoid overfitting the data. The procedure, based on easily identifiable engineering parameters, is a useful tool to incorporate effects of aftershocks into seismic analysis and design.  相似文献   
73.
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号