首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
大气科学   7篇
地球物理   17篇
地质学   26篇
海洋学   10篇
天文学   13篇
自然地理   18篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  1999年   3篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
81.
Reflection seismic data were acquired along a c. 23 km long profile over the Pärvie Fault system with a nominal receiver and source spacing of 20 m. An hydraulic breaking hammer was used as a source, generating signals with a penetration depth of about 5–6 km. Steeply dipping reflections from the end-glacial faults are observed, as well as sub-horizontal reflections. The location and orientation of the reflections from the faults agree well with surface geological observations of fault geometries. Reflections from a potential fourth end-glacial fault is observed further to the east along the profile. The more sub-horizontal reflections may originate from gabbroic bodies within the granitic basement or from deeper lying greenstones. Our results indicate that the end-glacial faults dip at moderate to steep dips down to at least 2–3 km depth, and possibly continue at this dip to depths of 6 km. This result has significant implications for determining the state of stress required to activate the faults in the past and in the future.  相似文献   
82.
Determination of internal wave properties from X-Band radar observations   总被引:2,自引:0,他引:2  
The application of nautical X-Band radars to measure internal wave (IW) properties is investigated. A methodology based on the use of Radon transform (RT) techniques to detect internal wave related features from backscatter image sequences is introduced to compute properties such as direction of propagation, non-linear velocity (c0), distance between solitons (Lcc) and number of solitons per packet. The proposed methodology was applied to several events recorded by a ship-mounted X-Band radar system (WaMoS) during the NLIWI experiment in 2006. Results from the comparisons to simultaneous measurements taken at neighboring oceanographic moorings indicated that c0 can be estimated with a RMS error of 0.06 m s−1, which corresponds to a mean relative error of −1.4%. Similarly, Lcc can be estimated with a RMS error of 98 m, which is associated with a mean relative error of 14.6%. This latter error estimate however is likely to be overestimated, because it reflects strongly the separation between sampling stations as Lcc was shown to be highly dependent on propagation distance. The accuracy of the results shows that X-Band systems are well suited to measure internal wave properties offering some advantages over SAR and other in situ devices.  相似文献   
83.
Hypotheses about the influence of surface shape, landscape unit and vegetation cover on gravel dispersion were tested on a shallowly dissected portion of a low-sloping granite pediment in the East Mojave Desert of California. Painted gravels (2 to 20 mm diameter) were placed at 117 nodes on a 6m × 3m grid. Gravel movements were recorded after 9.7 cm of precipitation over a four-month period. Vectors indicating the magnitude and direction of gravel movement were longest for summits (24 cm, 34 nodes observed) and shortest for backslopes (14 cm, 27 nodes observed). Gravels beneath shrub canopies were protected significantly from rainsplash transport. To describe dispersion symmetry, eccentricity values were calculated using a ratio of variances of major and minor axes of an ellipse. Mean eccentricity values ranged from about 3 to 250 with dispersion on summits being the most symmetrical and dispersion in washes being the most elongated. Erosion is the most important soil- and pediment-modifying process at upper elevations of the Granite Cove Pediment which is cut off from sediment additions because of washes incised at the base of the mountain front. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
84.
P- and S-wave velocity distributions obtained from DSS measurement have been used as a constraint in the inversion of surface-wave dispersion data. The combined interpretation was made as an attempt to enhance the resulting velocity models and to test the possibility to draw conclusions about the density distribution. The result indicates a potential value of a combined interpretation but it is obvious that very accurate velocity distributions are needed. The achieved density distribution is in good agreement with reported densities derived from gravimetric studies.  相似文献   
85.
Novotný  O.  Grad  M.  Lund  C.-E.  Urban  L. 《Studia Geophysica et Geodaetica》1997,41(1):15-28
Experimental dispersion curves of Rayleigh and Love waves along the Uppsala-Prague profile have been determined using records of several Italian earthquakes. To interpret the dispersion data, results of previous geophysical investigations in this region were first analyzed. Seven blocks of the crust and upper mantle were distinguished along the profile on the basis of deep seismic sounding and other seismic data. Layered models were proposed for these blocks. Computation of Rayleigh and Love waves shows a large differentiation of theoretical dispersion curves for the northern (Precambrian) and southern (Palaeozoic) part of the profile. A laterally inhomogeneous model for theUppsala - Prague profile, composed of the seven blocks, satisfies the surface wave data for the profile. Moreover, a mean layered model for the whole profile has also been proposed.  相似文献   
86.
The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport–chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport–chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25 km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9 km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport–chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems.  相似文献   
87.
The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts (< 2 s) have 10 ms structure in their time histories. They have harder energy spectra than the long (> 2 s) events. Evidence of the existence of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with ( 10–6 erg/cm2) sensitivity as well as the results of high sensitivity ( 10–8 erg/cm2) search for Gamma-Ray Bursts within the SIGMA telescope field of view are reviewed.  相似文献   
88.
89.
90.
Geothermal energy is classified as a renewable energy source and it utilizes the heat generated in the earth primarily from the natural radioactive decay of isotopes of uranium, thorium and potassium. Heat is extracted from the earth to generate geothermal energy via a carrier, usually water occurring either in the liquid or steam phase. In the late 19th century and the early 20th century, the first developments of geothermal resources for power generation and household heating got underway successfully. Many of these geothermal fields are still being utilized today, proving their sustainability. Today geothermal energy is being utilized in more than 72 countries around the world and of the Nordic countries Iceland and Sweden have been in the forefront in each of their respective fields. While geothermal heat pumps are widely used for space heating in Sweden, geothermal energy covers 55% of the primary energy consumption in Iceland where it is used for space heating, power generation and industrial purposes. Future developments aim at expanding the range of viable geothermal resources by improving the capabilities to generate electricity from geothermal resources at temperatures as low as 100℃, as well as developing geothermal resources where water needs to be introduced, so-called hot dry rock resources. But the biggest expansion is expected to continue to be in the installations of geothermal heat pumps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号