首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   1篇
测绘学   11篇
大气科学   15篇
地球物理   25篇
地质学   42篇
海洋学   8篇
天文学   14篇
自然地理   2篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   12篇
  2017年   10篇
  2016年   9篇
  2015年   2篇
  2014年   7篇
  2013年   12篇
  2012年   9篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
91.
Intense agricultural and industrial activities in any area are likely to make groundwater vulnerable with respect to its quality. In one such area which is a part of Sabarmati river basin of Gujarat, factors influencing the groundwater hydrochemistry in pre‐ and post‐monsoon season were evaluated. Groundwater samples were collected from 5 km × 5 km grids on the basis of spectral signature of vegetation and soil, observed on satellite image. Integration of Conventional graphical plots, Piper plot, saturation index values (estimated using PHREEQC) and GIS was helpful not only to create the database for analysis of spatial variation in respective water quality parameters but also to decipher the hydrogeochemical process occurring in such a large area. USSL diagram and % sodium were used to characterise the suitability of groundwater for irrigation. It was observed that leaching of wastes disposed from anthropogenic activities and agrichemicals is the major factor influencing the groundwater quality, in addition to the natural processes such as weathering, dissolution and ion exchange. Sea water relics are also impacting the groundwater quality. Control of indiscriminate and unplanned exploitation of groundwater, application of fertilizers and disposal of industrial wastes in the affected areas can possibly ensure groundwater protection from further pollution and depletion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
92.
Propagation of shear waves in viscoelastic medium at irregular boundaries   总被引:2,自引:1,他引:1  
The aim of the paper is to study the shear wave propagation in a viscoelastic layer over a semi-infinite viscoelastic half space due to irregularity in the viscoelastic layer. It is of great interest to study the propaga-tion of shear waves in the assumed medium having a non planar boundary due to its similarity to most of the real situations. The perturbation method is applied to find the displacement field. The effect of complex wave number on dissipation factor is analysed. Finally, as an application, the result obtained has been used to get the reflected field in viscoelastic layer when the shear wave is incident on an irregular boundary in the shape of parabolic irregularity as well as triangular notch. It is observed that the amplitude of this reflected wave decreases with increasing length of the notch, and increases with increasing depth of the irregularity.  相似文献   
93.
Closed-form analytical expressions for the displacements and stresses induced by a single force of arbitrary orientation located in an elastic half-space in welded contact with another elastic half-space are obtained. These expressions are valid for arbitrary values of the Poisson's ratio and for arbitrary source and observer locations. The final results are given in a form that makes numerical computation straightforward and accurate.  相似文献   
94.
Forecasting of space–time groundwater level is important for sparsely monitored regions. Time series analysis using soft computing tools is powerful in temporal data analysis. Classical geostatistical methods provide the best estimates of spatial data. In the present work a hybrid framework for space–time groundwater level forecasting is proposed by combining a soft computing tool and a geostatistical model. Three time series forecasting models: artificial neural network, least square support vector machine and genetic programming (GP), are individually combined with the geostatistical ordinary kriging model. The experimental variogram thus obtained fits a linear combination of a nugget effect model and a power model. The efficacy of the space–time models was decided on both visual interpretation (spatial maps) and calculated error statistics. It was found that the GP–kriging space–time model gave the most satisfactory results in terms of average absolute relative error, root mean square error, normalized mean bias error and normalized root mean square error.  相似文献   
95.
Generation and propagation of internal waves (IWs) in the coastal waters of the extended shelf of the western Bay of Bengal are investigated for late winter by using the Massachusetts Institute of Technology General Circulation Model (MITgcm). The model is forced with astronomical tides and daily winds. Monthly climatological temperature and salinity fields are used as initial conditions. The simulations are compared with time series observations of temperature and currents from acoustic Doppler current profiler (ADCP) and conductivity-temperature-depth (CTD) moored at three locations south of Gopalpur: two at a local depth of 100 m and another at 400-m depth during 19–21 February 2012. The comparison of the spectral estimates for the time series of temperature from the model and observations are in reasonable agreement for the near-tidal frequency waves. The peak of temperature spectra is always found near the shelf break region which steadily lost its intensity over the continental shelf. The calculation of Richardson number reflected the presence of local mixing due to density overturning in the shelf region. To understand further the generation and propagation of internal tides in the region, energy flux and conversion of barotropic-to-baroclinic M2 tidal energy are examined. The model simulations suggest that the internal tide is generated all along the shelf slope. The energy flux analysis shows that the internal tides propagate to either side of the generation sites.  相似文献   
96.
Encounter of Voyager with Saturn’s environment revealed the presence of electromagnetic ion-cyclotron waves (EMIC) in Saturnian magnetosphere. Cassini provided the evidence of dynamic particle injections in inner magnetosphere of Saturn. Also inner magnetosphere of Saturn has highest rotational flow shear as compared to any other planet in our solar system. Hence during these injections, electrons and ions are transported to regions of stronger magnetic field, thus gaining energy. The dynamics of the inner magnetosphere of Saturn are governed by wave-particle interaction. In present paper we have investigated those EMIC waves pertaining in background plasma which propagates obliquely with respect to the magnetic field of Saturn. Applying kinetic approach, the expression for dispersion relation and growth rate has been derived. Magnetic field model has been used to incorporate magnetic field strength at different latitudes for radial distance of \(6.18~R_{{s}}\) (\(1~R_{{s}}= 60{,}268~\mbox{km}\)). Various parameters affecting the growth of EMIC waves in cold bi-Maxwellian background and after the hot injections has been studied. Parametric analysis inferred that after hot injections, growth rate of EMIC waves increases till \(10^{\circ}\) and decreases eventually with increase in latitude due to ion density distribution in near-equatorial region. Also, growth rate of EMIC waves increases with increasing value of temperature anisotropy and AC frequency, but the growth rate decreases as the angle of propagation with respect to \(B_{0}\) (Magnetic field at equator) increases. The injection events which assume the Loss-cone distribution of particles, affect the lower wave numbers of the spectra.  相似文献   
97.
Previous studies on semi-arid ecosystems have shown high values of soil moisture variability (SMV) primarily induced by the combined effects of non-uniform precipitation, incoming solar radiation, and soil and vegetation properties. However, the relative impact of these various factors on SMV has been difficult to evaluate due to limited availability of field data. In addition, only a limited number of studies have analysed the role of landscape morphology on SMV. Here we use numerical simulations of a simple hydrological model, the Bucket Grassland Model, to systematically analyse the effect of each contributing factor on SMV on two different landscape morphologies. The two different landform morphologies represent landscapes dominated respectively by either diffusive erosion or fluvial erosion processes. We conducted various simulations driven by a stochastically generated 100-year climate time series, which is long enough to capture climatic fluctuations, in order to understand the effect of various soil moisture controlling factors on the spatiotemporal SMV. Our modelling results show that the fluvial dominated landscapes promote higher spatial SMV than the diffusive dominated ones. Further, the role of landform morphology on SMV is more pronounced in regions where the spatial variability of incoming solar radiation and precipitation is high.  相似文献   
98.
Measurements of surface ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx=NO+NO2) and meteorological parameters have been made at Agra (North Central India, 27°10??N, 78°05??E) in post monsoon and winter season. The diurnal variation in O3 concentration shows daytime in situ photochemical production with diurnal maximum in noon hours ranging from 51 to 54 ppb in post monsoon and from 76 to 82 ppb in winter, while minimum (16?C24 ppb) during nighttime and early morning hours. Average 8-h O3 concentration varied from 12.4 to 83.9 ppb. The relationship between meteorological parameters (solar radiation intensity, temperature, relative humidity, wind speed and wind direction) and surface O3 variability was studied using principal component analysis (PCA), multiple linear regression (MLR) and correlation analysis (CA). PCA and MLR of daily mean O3 concentrations on meteorological parameters explain up to 80 % of day to day ozone variability. Correlation with meteorology is strongly emphasized on days having strong solar radiation intensity and longer sunshine time.  相似文献   
99.
100.
Abstract

River basin assessment is crucial for water management and to address the watershed issues. So, an integrated river basin management and assessment model using morphometric assessment, remote sensing, GIS and SWAT model was envisaged and applied to Kaddam river basin, Telangana state, India. Morphometric results showed high drainage density ranging from 2.19 to 5.5?km2/km, with elongated fan shape having elongation ratio of 0.60–0.75 with sparse vegetation and high relief. Land use change assessment showed that 265.26?km2 of forest land is converted into irrigated land and has increased sediment yields in watersheds. The calibration (r 2?=?0.74, NSE?=?0.84) and validation (r 2?=?0.72, NSE?=?0.84) of SWAT model showed that simulated and observed results were in agreement and in recommended ranges. The SWAT simulations were used to compute mean annual water and sediment yield from 1997 to 2012, along with morphometric results to categorize critical watersheds and conservation structures were proposed accordingly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号