首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   11篇
  国内免费   4篇
测绘学   9篇
大气科学   17篇
地球物理   67篇
地质学   103篇
海洋学   9篇
天文学   4篇
综合类   6篇
自然地理   9篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   7篇
  2020年   8篇
  2019年   14篇
  2018年   17篇
  2017年   24篇
  2016年   19篇
  2015年   15篇
  2014年   18篇
  2013年   29篇
  2012年   12篇
  2011年   17篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有224条查询结果,搜索用时 62 毫秒
111.
The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature. For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations. Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated. The landslide locations were used to validate results of the landslide susceptibility maps. The verification results showed that the weights-of-evidence model (79.87%) performed better than certainty factor (72.02%) model with a standard error of 0.0663 and 0.0756, respectively. According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties.  相似文献   
112.
Soil aggregate stability has been known as one of the most important soil properties which is influenced by cultivation system. This study investigates the effect of different cultivation systems on aggregate stability indices in two statuses of dry (DSA?>?0.25 mm) and wet (WSA?>?0.25 mm). The study was done in six cultivation systems consisting wheat, barley, maize, alfalfa, fallow, and plowed farms. The results showed that aggregate stability indices affected significantly by the type of cultivation system. In contrast, no meaningful effect of soil depth (0–10 and 10–20 cm) on selected soil properties was observed. In addition, soil primary particles as well as organic carbon differed significantly between the cultivation systems. Wheat and alfalfa farms consisted of larger aggregates, while water-stable aggregate for wheat found to be in a greater degree. Moreover, wheat and barley showed the highest contents of organic carbon. The results of WSA?>?0.25 mm indicated that the correlation coefficients for sand, silt, clay, and organic carbon contents were ?0.67, 0.74, 0.12, and 0.70, respectively. Compared to the DSA?>?0.25 mm, the effect of soil organic carbon on the WSA?>?0.25 mm was arisen while the influence of clay fraction reduced.  相似文献   
113.
The separation of residual gravity anomaly from regional gravity has considerably been studied for many years in gravity explorations. In addition, it is considered as a critical step in gravity data inversion. Some techniques have been developed for regional–residual anomaly separation both in space and frequency domains. One of these techniques for computing the regional anomaly is nonlinear filtering. In this paper, some techniques such as low-pass filtering, Butterworth, upward continuation, and nonlinear filtering are used to on synthetic gravity data in present of random noise and noise free for the purpose of residual–regional anomaly separation. The obtained results of techniques are compared with each other. The results have shown that separation methods are so efficient where synthetic models are located in shallow depth. Moreover, it is found that in comparison with other separation techniques, nonlinear filtering is more efficient in residual–regional anomaly separation and upward continuation technique is more efficient than Butterworth filter and low-pass filter. In addition, all of the obtained results have shown that Butterworth and low-pass filters are the same.  相似文献   
114.
Mountainous rangelands play a pivotal role in providing forage resources for livestock, particularly in summer, and maintaining ecological balance. This study aimed to identify environmental variables affecting range plant species distribution, ecological analysis of the relationship between these variables and the distribution of plants, and to model and map the plant habitats suitability by the Random Forest Method(RFM) in rangelands of the Taftan Mountain, Sistan and Baluchestan Province, southeastern Iran. In order to determine the environmental variables and estimate the potential distribution of plant species, the presence points of plants were recorded by using systematic random sampling method(90 points of presence) and soils were sampled in 5 habitats by random method in 0–30 and 30–60 cm depths. The layers of environmental variables were prepared using the Kriging interpolation method and Geographic Information System facilities. The distribution of the plant habitats was finally modelled and mapped by the RFM. Continuous maps of the habitat suitability were converted to binary maps using Youden Index(?) in order to evaluate the accuracy of the RFM in estimation of the distribution of species potentialhabitat. Based on the values of the area under curve(AUC) statistics, accuracy of predictive models of all habitats was in good level. Investigating the agreement between the predicted map, generated by each model, and actual maps, generated from fieldmeasured data, of the plant habitats, was at a high level for all habitats, except for Amygdalus scoparia habitat. This study concluded that the RFM is a robust model to analyze the relationships between the distribution of plant species and environmental variables as well as to prepare potential distribution maps of plant habitats that are of higher priority for conservation on the local scale in arid mountainous rangelands.  相似文献   
115.
Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake-groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike-and-Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from <0.2 to >0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.  相似文献   
116.
117.
Spatial distribution and biodiversity of macrofauna in the Gorgan Bay, southeast of the Caspian Sea, were studied at fifteen stations in June 2010. Also, depth, temperature, salinity, dissolved oxygen, total organic matter content and sediment particle size were measured in each station. A total 3,356 individuals belonged to eight families and ten species were identified. Polychaeta were numerically dominated groups and Streblospio gynobranchiata, was constant and dominant species with 60.28% of total individuals but Bivalvia with four species had highest species number, though the density of them were low. The maximum density (4,500 ind/m2) was obtained at station 1 while the minimum (411 ind/m2) was observed at station 6. There was not significant correlation between the density of macrofauna with all environmental conditions. In total, six feeding group were considered but surface deposit feeder and deposit feeder were dominant in all stations. The maximum mean species number, diversity, richness, and evenness were obtained, 6.33, 1.46, 1.38 and 0.87, respectively. Based on the M-AMBI and the AMBI classification it seems that bentic environment in Gorgan Bay was not bad but the results of Shannon-Wiener, Margalef and Simpson indices the results were vice versa. In general, the values of the mentioned indices decreased from the western to the eastern part of the bay. Furthermore, the nonmetric multidimensional scaling (nMDS) showed that the structure of the macrofaunal assemblages was divides to six groups.  相似文献   
118.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   
119.
120.
The impacts of floods and droughts are intensified by climate change, lack of preparedness, and coordination. The average rainfall in study area is ranging from 200 to 400 mm per year. Rain gauge generally provides very accurate measurement of point rain rates and the amounts of rainfall but due to scarcity of the gauge locations provides very general information of the area on regional scale. Recognizing these practical limitations, it is essential to use remote sensing techniques for measuring the quantity of rainfall in the Middle Indus. In this research, Tropical Rainfall Measuring Mission (TRMM) estimation can be used as a proxy for the magnitude of rainfall estimates from classical methods (rain gauge), quantity, and its spatial distribution for Middle Indus river basin. In order to use TRMM satellite data for discharge measurement, its accuracy is determined by statistically comparing it with in situ gauged data on daily and monthly bases. The daily R 2 value (0.42) is significantly lower than monthly R 2 value (0.82), probably due to the time of summation of TRMM 3-hourly precipitation data into daily estimates. Daily TRMM data from 2003 to 2012 was used as input forcing in Soil and Water Assessment Tool (SWAT) hydrological model along with other input parameters. The calibration and validation results of SWAT model give R 2 = 0.72 and 0.73 and Nash-Sutcliffe coefficient of efficiency = 0.69 and 0.65, respectively. Daily and monthly comparison graphs are generated on the basis of model discharge output and observed data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号