首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   961篇
  免费   61篇
  国内免费   15篇
测绘学   33篇
大气科学   65篇
地球物理   312篇
地质学   342篇
海洋学   63篇
天文学   155篇
综合类   5篇
自然地理   62篇
  2023年   5篇
  2022年   23篇
  2021年   14篇
  2020年   27篇
  2019年   24篇
  2018年   47篇
  2017年   49篇
  2016年   53篇
  2015年   52篇
  2014年   65篇
  2013年   65篇
  2012年   64篇
  2011年   62篇
  2010年   61篇
  2009年   80篇
  2008年   57篇
  2007年   43篇
  2006年   30篇
  2005年   38篇
  2004年   25篇
  2003年   28篇
  2002年   26篇
  2001年   13篇
  2000年   7篇
  1999年   13篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1969年   3篇
排序方式: 共有1037条查询结果,搜索用时 31 毫秒
51.
Although W. Brunner began to weight sunspot counts (from 1926), using a method whereby larger spots were counted more than once, he compensated for the weighting by not counting enough smaller spots in order to maintain the same reduction factor (0.6) as was used by his predecessor A. Wolfer to reduce the count to R. Wolf’s original scale, so that the weighting did not have any effect on the scale of the sunspot number. In 1947, M. Waldmeier formalized the weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno. This explicit counting method, when followed, inflates the relative sunspot number over that which corresponds to the scale set by Wolfer (and matched by Brunner). Recounting some 60,000 sunspots on drawings from the reference station Locarno shows that the number of sunspots reported was “over counted” by \({\approx}\,44~\%\) on average, leading to an inflation (measured by an effective weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer M. Cagnotti, we determined that Svalgaard’s count closely matches that of Cagnotti, allowing us to determine from direct observation the daily weight factor for spots since 2003 (and sporadically before). The effective total inflation turns out to have two sources: a major one (15?–?18 %) caused by weighting of spots, and a minor source (4?–?5 %) caused by the introduction of the Zürich classification of sunspot groups which increases the group count by 7?–?8 % and the relative sunspot number by about half that. We find that a simple empirical equation (depending on the activity level) fits the observed factors well, and use that fit to estimate the weighting inflation factor for each month back to the introduction of effective inflation in 1947 and thus to be able to correct for the over-counts and to reduce sunspot counting to the Wolfer method in use from 1894 onwards.  相似文献   
52.
We present a preliminary assessment of the non-X-ray background for the WFI on board ATHENA conducted at IAAT in the context of the collaborative background and radiation damage working group activities. Our main result is that in the baseline configuration originally assumed for the camera the requirement on the level of non-X-ray background could not be met. In light of the results of Geant4 simulations we propose and discuss a possible optimization of the camera design and pinpoint some open issues to be addressed in the next phase of investigation. One of these concerns the possible contribution to the non-X-ray background from soft protons and ions funneled to the focal plane through the optics. This is not quantified at this stage, here we just briefly report on our ongoing activities aimed at validating the mechanisms of proton scattering at grazing incidence.  相似文献   
53.
Coastal lagoons are ephemeral habitats whose conservation requires human intervention, such as maintenance dredging of inner channels. Dredging can reduce the abundance of benthic species due to the removal of individuals with the sediment, modify sediment properties, and resuspend fine sediment, nutrients and pollutants, which can lead to eutrophication, hypoxic events and increasing toxicity. Both direct effects in the dredged channel and possible indirect effects in surrounding shallow areas could be expected. This study assesses the effects of the channel maintenance dredging, performed between October 2004 and August 2005, on the invertebrate assemblages both in channels and adjacent ponds in the northern Adriatic coastal lagoon of Pialassa Baiona. The lagoon is affected by eutrophication, chemical and thermal pollution from wastewater treatment and power plants. Three impacted sites were located in the dredged channel and three in the adjacent interconnected shallow water ponds, while three non-impacted sites were located in a channel and in a pond far from the dredged area. Replicate samples were collected from each site one time before and one time after the dredging operations. Despite the extent of the intervention, effects of the dredging on macrobenthic assemblages were detected only within the dredged channel, while in the surrounding ponds no clear and unequivocal effects were found. In particular the dredging could have promoted the increase of the abundance of the polychaete Streblospio shrubsolii in the southern and central parts of the dredged channel and the increase in abundance of the amphipod Corophium insidiosum in the northern side, compared to the controls. Instead, species diversity was reduced in the central and northern parts of the dredged channel. These effects on the macrobenthic invertebrate assemblages could be related to the observed changes of sediment characteristics, contamination and toxicity. Overall, direct effects on benthic assemblages in the dredged channels were more detectable than the possible secondary effects in the surrounding shallow ponds, where the higher spatial heterogeneity can mask any relevant effects.  相似文献   
54.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
55.
The growing concern for health‐related problems deriving from pollutants leaching is driving national and international administrations to support the development of tools for evaluating the effects of alternate management scenarios and identifying vulnerable areas. Cropping systems models are powerful tools for evaluating leachates under different environmental, social, and management conditions. As percolating water is the transport vehicle for pollutants transport in soil, a reliable evaluation of water balance models is a fundamental prerequisite for investigating pesticides and nitrate fate. As specific approaches for the evaluation of multi‐layer evolution of state variables are missing, we propose a fuzzy‐based, integrated indicator (ISWC: 0, best; 1, worst) for a comprehensive evaluation of soil water content (SWC) simulations. We aggregated error metrics with others quantifying the homogeneity of errors across different soil layers, the capability of models to reproduce complex dynamics function of both time and soil depth, and model complexity. We tested ISWC on a sample dataset where the models CropSyst and CERES‐Wheat were used to simulate SWC for winter wheat systems. ISWC revealed that, in the explored conditions, the global assessment of the two models' performances allowed identification of CropSyst as the best (average ISWC = 0·441, with a value of 0·537 obtained by CERES‐Wheat), although each model prevailed for some of the metrics. CropSyst presented the highest accuracy (average agreement module = 0·400), whereas CERES‐Wheat's accuracy was slightly worse, although achieved with a simplified modelling approach (average Akaike Information Criterion = − 230·44), thereby favouring large‐area applicability. The non‐univocal scores achieved by the models for the different metrics support the use of multi‐metric evaluation approaches for quantifying the different aspects of water balance model performances. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
56.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors.  相似文献   
57.
One of the basic requirements for a scientific use of rain data from raingauges, ground and space radars is data quality control. Rain data could be used more intensively in many fields of activity (meteorology, hydrology, etc.), if the achievable data quality could be improved. This depends on the available data quality delivered by the measuring devices and the data quality enhancement procedures. To get an overview of the existing algorithms a literature review and literature pool have been produced. The diverse algorithms have been evaluated to meet VOLTAIRE objectives and sorted in different groups. To test the chosen algorithms an algorithm pool has been established, where the software is collected. A large part of this work presented here is implemented in the scope of the EU-project VOLTAIRE (Validation of multisensors precipitation fields and numerical modeling in Mediterranean test sites).  相似文献   
58.
We introduce a new computational model designed to simulate and investigate reach-scale alluvial dynamics within a landscape evolution model. The model is based on the cellular automaton concept, whereby the continued iteration of a series of local process ‘rules’ governs the behaviour of the entire system. The model is a modified version of the CAESAR landscape evolution model, which applies a suite of physically based rules to simulate the entrainment, transport and deposition of sediments. The CAESAR model has been altered to improve the representation of hydraulic and geomorphic processes in an alluvial environment. In-channel and overbank flow, sediment entrainment and deposition, suspended load and bed load transport, lateral erosion and bank failure have all been represented as local cellular automaton rules. Although these rules are relatively simple and straightforward, their combined and repeatedly iterated effect is such that complex, non-linear geomorphological response can be simulated within the model. Examples of such larger-scale, emergent responses include channel incision and aggradation, terrace formation, channel migration and river meandering, formation of meander cutoffs, and transitions between braided and single-thread channel patterns. In the current study, the model is illustrated on a reach of the River Teifi, near Lampeter, Wales, UK.  相似文献   
59.
60.
The Henry formulation, which couples subsurface flow and salt transport via a variable-density flow formulation, can be used to evaluate the extent of sea water intrusion into coastal aquifers. The coupling gives rise to nontrivial flow patterns that are very different from those observed in inland aquifers. We investigate the influence of these flow patterns on the transport of conservative contaminants in a coastal aquifer. The flow is characterized by two dimensionless parameters: the Péclet number, which compares the relative effects of advective and dispersive transport mechanisms, and a coupling parameter, which describes the importance of the salt water boundary on the flow. We focus our attention on two regimes – low and intermediate Péclet number flows. Two transport scenarios are solved analytically by means of a perturbation analysis. The first, a natural attenuation scenario, describes the flushing of a contaminant from a coastal aquifer by clean fresh water, while the second, a contaminant spill scenario, considers an isolated point source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号