首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   10篇
  国内免费   2篇
测绘学   2篇
大气科学   16篇
地球物理   96篇
地质学   121篇
海洋学   35篇
天文学   36篇
综合类   4篇
自然地理   32篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   9篇
  2014年   17篇
  2013年   11篇
  2012年   15篇
  2011年   19篇
  2010年   16篇
  2009年   23篇
  2008年   17篇
  2007年   13篇
  2006年   11篇
  2005年   8篇
  2004年   16篇
  2003年   10篇
  2002年   10篇
  2001年   11篇
  2000年   4篇
  1999年   4篇
  1998年   8篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1968年   1篇
  1965年   1篇
  1961年   1篇
排序方式: 共有342条查询结果,搜索用时 15 毫秒
81.
High-pressure stability relations in cobalt and nickel silicates have been studied over the pressure range 130–330 kbar employing a double-staged split-sphere-type high-pressure apparatus.γ-Co2SiO4 and γ-Ni2SiO4 decompose directly into their constituent oxide mixtures (rocksalt plus stishovite) 175 kbar and 280 kbar, respectively. The result that γ-Ni2SiO4 has a wider stability field in pressure than γ-Co2SiO4, is consistent with simple crystal-field theory.The experimental precision is high enough to show that the decomposition boundary of γ-Co2SiO4 has a positive slope (dP/dT > 0) and a preliminary determination of the boundary curve is P(kbar) = 0.065 T (°C) + 110.No positive evidence for the existence of high-pressure forms of CoSiO3 and NiSiO3 has been obtained in these quenching experiments, and they finally decompose into constituent oxide mixtures as in the cases of orthosilicates.  相似文献   
82.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   
83.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   
84.
We analyze the relationship between the dynamics of the coronal mass ejection (CME) of 15 May 2001 and the energy release in the associated flare. The flare took place behind the east limb and was disclosed by a growing system of hot soft X-ray (SXR) loops that appeared from behind the limb around the onset of the rapid acceleration of the CME. The highly correlated behavior of the SXR light-curve derivative and the time profile of the CME acceleration reveals an intrinsic relationship between the CME dynamics and the flare energy release. Furthermore, we found that the CME acceleration peak occurs simultaneously with the fastest growth (100 km s-1) of X-ray loops, indicating that the reconnection plays an essential role in the eruption. Inspecting the CME/flare morphology we recognized in the Yohkoh-SXT images an oval feature that formed within the rising structure at the onset of the rapid acceleration phase, simultaneously with the appearance of the X-ray loops. The eruptive prominence was imbedded within the lower half of the oval, suggestive of a flux-rope/prominence magnetic configuration. We interpret the observed morphological evolution in terms of a reconnection process in the current sheet that presumably formed below the erupting flux-rope at the onset of the CME acceleration. Measurements of the tip-height of the cusped X-ray loop system and the height of the lower edge of the oval, enable us to trace the stretching of the current sheet. The initial distance between the oval and the loops amounted to 35 – 40 Mm. In about 1 h the inferred length of the current sheet increased to 150 – 200 Mm, which corresponds to a mean elongation speed of 35 – 45 km s-1. The results are discussed in the framework of CME models that include the magnetic reconnection below the erupting flux-rope.  相似文献   
85.
We delineate shallow structures of the Mozumi–Sukenobu fault, central Japan, using fault zone waves generated by near-surface explosions and detected by a seismometer array. Two explosive sources, S1 and S2, were placed at a distance of about 2 km from the array, and the other two, S3 and S4, were at a distance of about 4 km. Fault zone head waves and fault zone trapped waves following direct P wave arrivals were clearly identified in the seismograms recorded by a linear seismometer array deployed across the fault in a research tunnel at a depth of 300 m. Synthetic waveforms generated by a 3-D finite-difference (3-D FD) method were compared with observed fault zone waves up to 25 Hz. The best fitting model indicates a 200-m-wide low-velocity zone extending at least to shot site S1 located 2 km east of the seismic array with a 20% decrease in the P wave velocity relative to the wall rock. The width of the low-velocity zone is consistent with the fault zone defined by direct geological observation in the research tunnel. However, the low-velocity zone should disappear just to the east of the site S1 to explain the observed fault zone waves for shot S3 and S4 located 4 km east of the seismometer array. Yet the observation and the simulation show notable trapped wave excitation even though shots S3 and S4 are outside the fault zone. These results indicate that (1) the effective waveguide for seismic waves along the fault does not exist east of source site S1 although the surface traces of the fault are observed in this region, and (2) considerable trapped waves can be excited by sources well outside the fault zone. These results highlight the along-strike variability in fault zone structure.  相似文献   
86.
87.
The oxygen isotopic micro-distributions within and among minerals in a coarse-grained Ca, Al-rich inclusion (CAI), 7R-19-1 from the Allende meteorite, were measured by in situ using secondary ion mass spectrometry (SIMS). All values of O isotopic ratios in 7R-19-1 minerals fall along the carbonaceous chondrite anhydrous mineral mixing (CCAM) line on a δ17OSMOW vs. δ18OSMOW plot. Major refractory minerals (spinel, fassaite and melilite) in 7R-19-1 showed large negative anomalies of Δ17O in the order, spinel (−21‰) > 16O-rich melilite (∼−18‰) > fassaite (−15 to +1‰) > 16O-poor melilite (−8 to +2‰). However, the lower limit values of Δ17O are similar at about −21‰, a value commonly observed in CAIs. The similarity in the extreme values of the isotope anomaly anomalies suggests that crystallization of all CAIs started from an 16O enrichment of 21‰ (Δ17O) relative to terrestrial values. The order of the O isotopic anomalies observed for 7R-19-1, except for 16O-poor melilite, is parallel to the crystallization sequence determined by experiment from CAI liquid (Stolper, 1982), indicating that the O isotopic exchange in 7R-19-1 occurred between CAI melt and surrounding gas while 7R-19-1 was crystallizing from the 16O enriched CAI liquid (∼−21‰ in Δ17O) in the 16O-poor solar nebula. However, the a single crystallization sequence during the cooling stage cannot explain the existence of 16O-poor melilite. The presence of 16O-poor melilite suggests that multiple heating events occurred during CAI formation. The sharp contact between 16O-rich and 16O-poor melilite crystals and within 16O-rich melilite indicates that these multiple heatings occurred quickly. Based on the O isotopic and chemical compositions, fassaite crystals were aggregates of relic crystals formed from CAI melt whichthat have had various O isotopic compositions from the remelting processes. The results of intra-mineral distributions of O isotopes also support multiple heating events during CAI formation.  相似文献   
88.
Bogdan Enescu  Kiyoshi Ito   《Tectonophysics》2005,409(1-4):147-157
By using the double-difference relocation technique, we have determined the fine structure of seismicity during the 1998 Hida Mountain earthquake swarm. The distribution of seismic activity defines two main directions (N–S and E–W) that probably correspond to the regional stress pattern. The detailed structure of seismicity reveals intense spatio-temporal clustering and earthquake lineations. Each cluster of events contains a mainshock and subsequent aftershock activity that decays according to the Omori law. The seismicity and the b-value temporal and spatial patterns reflect the evolution of the static stress changes during the earthquake swarm. About 80% of the swarm's best-relocated events occur in regions of increased ΔCFF. The smaller value of b found in the northern part of the swarm region and a larger b-value observed to the south, for the same period of time, could be well explained by the static stress changes caused by the larger events of the sequence. We argue that the state of stress in the crust is the main factor that controls the variation of b-value.  相似文献   
89.
90.
Interhemispheric anti-phasing of rainfall during the last glacial period   总被引:1,自引:0,他引:1  
We have obtained a high-resolution oxygen isotopic record of cave calcite from Caverna Botuverá (27°13′S, 49°09′W), southern Brazil, which covers most of the last 36 thousand years (ka), with an average resolution of a few to several decades. The chronology was determined with 46 U/Th ages from two stalagmites. Tests for equilibrium conditions show that oxygen isotopic variations are primarily caused by climate change. We interpret our record in terms of meteoric precipitation changes, hence the variability of South American Monsoon (SAM) intensity. The oxygen isotopic profile broadly follows local insolation changes and shows clear millennial-scale variations during the last glacial period with amplitudes as large as 3‰ but with smaller centennial-scale shifts (<1‰) during the Holocene. The overall record is strikingly similar to, but strongly anti-correlated with, a number of records from the Northern Hemisphere.We compared our record to other precisely dated contemporaneous records from Hulu Cave eastern China. Minima in δ18O (wet periods, intense SAM) at our site are synchronous with maxima in δ18O (dry periods, weak East Asian Monsoon, EAM) in eastern China (within precise dating errors) and vice versa. This anti-phased precipitation relationship between two low-latitude locations may be interhemispheric in extent, based on comparison with records from other sites. Precipitation anti-phasing may be related to north–south shifts in the mean position of the intertropical convergence zone (ITCZ) and asymmetry in Hadley circulation in two hemispheres, associated not with seasonal changes as observed today, but with millennial-scale climate shifts. The millennial-scale atmospheric see-saw patterns that we observe could have important controls and feedbacks on climate within hemispheres because of water vapor's greenhouse properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号