首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35269篇
  免费   653篇
  国内免费   381篇
测绘学   1340篇
大气科学   2828篇
地球物理   7066篇
地质学   12551篇
海洋学   2792篇
天文学   7926篇
综合类   157篇
自然地理   1643篇
  2021年   330篇
  2020年   340篇
  2019年   379篇
  2018年   943篇
  2017年   904篇
  2016年   1197篇
  2015年   725篇
  2014年   1106篇
  2013年   1889篇
  2012年   1194篇
  2011年   1457篇
  2010年   1245篇
  2009年   1600篇
  2008年   1364篇
  2007年   1302篇
  2006年   1309篇
  2005年   1093篇
  2004年   968篇
  2003年   960篇
  2002年   918篇
  2001年   835篇
  2000年   802篇
  1999年   708篇
  1998年   665篇
  1997年   678篇
  1996年   599篇
  1995年   575篇
  1994年   548篇
  1993年   454篇
  1992年   403篇
  1991年   441篇
  1990年   434篇
  1989年   408篇
  1988年   375篇
  1987年   444篇
  1986年   368篇
  1985年   448篇
  1984年   490篇
  1983年   482篇
  1982年   461篇
  1981年   367篇
  1980年   372篇
  1979年   325篇
  1978年   327篇
  1977年   302篇
  1976年   258篇
  1975年   265篇
  1974年   296篇
  1973年   332篇
  1972年   206篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
132.
It is suggested that a collapsing supermassive object, which acts as an ultra-high energy particle accelerator, is the precursor of an active galactic nucleus and that the gravitational energy released during the collapse of the object is locked in the quark-gluon plasma permeated by leptons into which the entire matter in the core of the object is converted as a result of the collapse. It is also pointed out that the collapse of the object to a space-time singularity is inhibited by Pauli's exclusion principle as well as by Heisenberg's uncertainty principle and that the object explodes, before it could collapse to a singularity, thereby releasing the enormous amount of energy locked in the quark-gluon plasma.  相似文献   
133.
Crifo  J.-F.  Rodionov  A. V.  Szegö  K.  Fulle  M. 《Earth, Moon, and Planets》2002,90(1-4):227-238
We briefly describe an advanced 3D gas dynamical model developed for the simulation of theenvironment of active cometary nuclei. The model canhandle realistic nucleus shapes and alternative physical models for the gas and dust production mechanism.The inner gas coma structure is computed by solving self-consistently(a) near to the surface the Boltzman Equation(b) outside of it, Euler or Navier-Stokes equations.The dust distribution is computed from multifluid ``zero-temperature' Euler equations,extrapolated with the help of a Keplerian fountain model.The evolution of the coma during the nucleus orbital and spin motion,is computed as a succession of quasi-steady solutions. Earlier versions of the model using simple,``paedagogic' nuclei have demonstrated that the surface orographyand the surface inhomogeneity contribute similarly to structuring the near-nucleusgas and dust coma,casting a shadow on the automatic attribution of such structures to ``active areas'.The model was recently applied to comet P/Halley, for whichthe nucleus shape is available. In the companion paper of this volume,we show that most near-nucleus dust structuresobserved during the 1986 Halley flybys are reproduced, assuming that the nucleus is strictly homogeneous. Here, we investigate the effect of shape perturbations and homogeneityperturbations. We show that the near nucleus gas coma structure is robust vis-a-vissuch effects. In particular, a random distribution of active and inactive areaswould not affect considerably this structure, suggesting that such areas,even if present, could not be easily identified on images of the coma.  相似文献   
134.
In many astrophysical problems, the study of the stability of an atmosphere in the presence of a magnetic field is of importance. In most cases the MHD instabilities of atmospheres are studied by energy principle of Bernsteinet al. (1958). In this paper, a general method for studying the stability of a system subject to MHD equations of conditions has been proposed. This is based on the local potential concept put forward by Glansdorff and Prigogine (1964). The scheme for securing stability criteria has been demonstrated in two particular cases.  相似文献   
135.
A study of galaxy mergers, on the basis of the collisional theory, using galaxy models without halos and considering the evolution of the proginator galaxies only from a time when the gravitational interaction between them is physically significant, indicates that most of the mergers are affected in 2 to 3 orbital periods for progenitors of comparable mass: shorter and longer time-scales being underabundant. These results have a bearing on the evolution of binary galaxies; indicating that once the relative orbit of a binary is circularized, the components will merge during the subsequent orbit or the next one (in a time-scale ~ 108 years). These results are also indicative of the fact that binary evolution is very likely to cause a gradual evolution of the fundamental plane occupied by paired ellipticals from that of isolated ellipticals. After the merger, the remnant is very likely to define a fundamental plane with a slightly different slope.  相似文献   
136.
About a dozen physical mechanisms and models aspire to explain the negative polarization of light scattered by atmosphereless celestial bodies. This is too large a number for the reliable interpretation of observational data. Through a comparative analysis of the models, our main goal is to answer the question: Does any one model have an advantage over the others? Our analysis is based on new laboratory polarimetric and photometric data as well as on theoretical results. We show that the widely used models due to Hopfield and Wolff cannot realistically explain the phase-angle dependence of the degree of polarization observed at small phase angles. The so-called interference or coherent backscattering mechanism is the most promising model. Models based on that mechanism use well-defined physical parameters to explain both negative polarization and the opposition effect. They are supported by laboratory experiments, particularly those showing enhancement of negative polarization with decreasing particle size down to the wavelength of light. According to the interference mechanism, pronounced negative branches of polarization, like those of C-class asteroids, may indicate a high degree of optical inhomogeneity of light-scattering surfaces at small scales. The mechanism also seems appropriate for treating the negative polarization and opposition effects of cometary dust comae, planetary rings, and the zodiacal light.  相似文献   
137.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   
138.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
139.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号