首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   20篇
  国内免费   4篇
测绘学   5篇
大气科学   6篇
地球物理   81篇
地质学   161篇
海洋学   41篇
天文学   48篇
综合类   2篇
自然地理   9篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   9篇
  2020年   8篇
  2019年   16篇
  2018年   18篇
  2017年   23篇
  2016年   13篇
  2015年   11篇
  2014年   16篇
  2013年   35篇
  2012年   20篇
  2011年   23篇
  2010年   17篇
  2009年   22篇
  2008年   22篇
  2007年   20篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有353条查询结果,搜索用时 15 毫秒
171.
The papers deals with a model of origin of cosmic gamma-bursts (CGB) which appear at cosmological distances from the merging of two compact stars. The process of CGB degeneration is divided into three stages – formation of the initial state, hydrodynamic expansion and free runaway. Theory includes fundamental parameters – a star mass and electron mass. Quantitative predictions of a model agree with the observed characteristics of CGB.  相似文献   
172.
Grain size is a fundamental property of sediments and is commonly used to describe sedimentary facies and classify sedimentary environments. Among the various conventional techniques utilized to determine grain‐size frequency distributions, sieving is the most widely applied procedure. The accuracy of such analyses is, among other factors, strongly dependent on the sieving time. However, despite a substantial amount of research in this field, optimal sieving times for different types of sediments have, to date, not been established. In this article, the influence of sieving time on grain‐size analyses of medium‐grained microtidal and mesotidal beach and dune sands has been determined. To assess the precision of important textural parameters, such as median grain size, sorting, skewness and kurtosis, an error analysis was carried out for different sieving times (2, 5, 10, 15 and 20 minutes). After calibrating the analytical and sampling methodologies, significant deviations were registered when sieving time was less than 10 minutes. However, such deviations were very small and grain‐size distributions remained almost identical for sieving times of 10 minutes and longer, relative errors being as low as 0% in some cases.  相似文献   
173.
Provenance data from Paleoproterozoic and possible Archean sedimentary units in the central eastern Gawler Craton in southern Australia form part of a growing dataset suggesting that the Gawler Craton shares important basin formation and tectonic time lines with the adjacent Curnamona Province and the Isan Inlier in northern Australia. U–Pb dating of detrital zircons from the Eba Formation, previously mapped as the Paleoproterozoic Tarcoola Formation, yields exclusively Archean ages (ca 3300–2530 Ma), which are consistent with evolved whole-rock Nd and zircon Hf isotopic data. The absence of Paleoproterozoic detrital grains in a number of sequences (including the Eba Formation), despite the proximity of voluminous Paleoproterozoic rock units, suggests that the Eba Formation may be part of a Neoarchean or early Paleoproterozoic cover sequence derived from erosion of a multi-aged Archean source region. The ca 1715 Ma Labyrinth Formation, unconformably overlying the Eba Formation, shares similar depositional timing with other basin systems in the Gawler Craton and the adjacent Curnamona Province. Detrital zircon ages in the Labyrinth Formation range from Neoarchean to Paleoproterozoic, and are consistent with derivation from >1715 Ma components of the Gawler Craton. Zircon Hf and whole-rock Nd isotopic data also suggest a source region with a mixed crustal evolution (εNd –6 to –4.5), consistent with what is known about the Gawler Craton. Compared with the lower Willyama Supergroup in the adjacent Curnamona Province, the Labyrinth Formation has a source more obviously reconcilable with the Gawler Craton. Stratigraphically overlying the Eba and Labyrinth Formations is the 1656 Ma Tarcoola Formation. Zircon Hf and whole-rock Nd isotopic data indicate that the Tarcoola Formation was sourced from comparatively juvenile rocks (εNd –4.1 to + 0.5). The timing of Tarcoola Formation deposition is similar to the juvenile upper Willyama Supergroup, further strengthening the stratigraphic links between the Gawler and Curnamona domains. Additionally, the Tarcoola Formation is similar in age to extensive units in the Mt Isa and Georgetown regions in northern Australia, also shown to be isotopically juvenile. These juvenile sedimentary rocks contrast with the evolved underlying sequences and hint at the existence of a large-scale ca 1650 Ma juvenile basin system in eastern Proterozoic Australia.  相似文献   
174.
U–Pb zircon analyses from a series of orthogneisses sampled in drill core in the northern Gawler Craton provide crystallisation ages at ca 1775–1750 Ma, which is an uncommon age in the Gawler Craton. Metamorphic zircon and monazite give ages of ca 1730–1710 Ma indicating that the igneous protoliths underwent metamorphism during the craton-wide Kimban Orogeny. Isotopic Hf zircon data show that 1780–1750 Ma zircons are somewhat evolved with initial εHf values –4 to +0.9, and model ages of ca 2.3 to 2.2 Ga. Isotopic whole rock Sm–Nd values from most samples have relatively evolved initial εNd values of –3.7 to –1.4. In contrast, a mafic unit from drill hole Middle Bore 1 has a juvenile isotopic signature with initial εHf zircon values of ca +5.2 to +8.2, and initial εNd values of +3.5 to +3.8. The presence of 1775–1750 Ma zircon forming magmatic rocks in the northern Gawler Craton provides a possible source for similarly aged detrital zircons in Paleoproterozoic basin systems of the Gawler Craton and adjacent Curnamona Province. Previous provenance studies on these Paleoproterozoic basins have appealed to the Arunta Region of the North Australian Craton to provide 1780–1750 Ma detrital zircons, and isotopically and geochemically similar basin fill. The orthogneisses in the northern Gawler Craton also match the source criteria and display geochemical similarities between coeval magmatism in the Arunta Region of the North Australian Craton, providing further support for paleogeographic reconstructions that link the Gawler Craton and North Australian Craton during the Paleoproterozoic.  相似文献   
175.
The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.  相似文献   
176.
A new meteorite find, named Khatyrka, was recovered from eastern Siberia as a result of a search for naturally occurring quasicrystals. The meteorite occurs as clastic grains within postglacial clay‐rich layers along the banks of a small stream in the Koryak Mountains, Chukotka Autonomous Okrug of far eastern Russia. Some of the grains are clearly chondritic and contain Type IA porphyritic olivine chondrules enclosed in matrices that have the characteristic platy olivine texture, matrix olivine composition, and mineralogy (olivine, pentlandite, nickel‐rich iron‐nickel metal, nepheline, and calcic pyroxene [diopside‐hedenbergite solid solution]) of oxidized‐subgroup CV3 chondrites. A few grains are fine‐grained spinel‐rich calcium‐aluminum‐rich inclusions with mineral oxygen isotopic compositions again typical of such objects in CV3 chondrites. The chondritic and CAI grains contain small fragments of metallic copper‐aluminum‐iron alloys that include the quasicrystalline phase icosahedrite. One grain is an achondritic intergrowth of Cu‐Al metal alloys and forsteritic olivine ± diopsidic pyroxene, both of which have meteoritic (CV3‐like) oxygen isotopic compositions. Finally, some grains consist almost entirely of metallic alloys of aluminum + copper ± iron. The Cu‐Al‐Fe metal alloys and the alloy‐bearing achondrite clast are interpreted to be an accretionary component of what otherwise is a fairly normal CV3 (oxidized) chondrite. This association of CV3 chondritic grains with metallic copper‐aluminum alloys makes Khatyrka a unique meteorite, perhaps best described as a complex CV3 (ox) breccia.  相似文献   
177.
178.
This Discussion provides comments on the application of grain-size trend analysis to Camposoto beach (SW Spain) reported by Poizot et al. (2013) in Geo-Marine Letters 33(4):263–272. Some of their results are updated or complemented by existing data from other studies carried out on Camposoto and other nearby beaches. For example, a detailed breakdown of beach nourishment volumes and costs is presented, and the influence of a horizontal reef flat on the tilting of the beach profile around the mean or the low water level is highlighted. Moreover, data from the displacement of dyed samples are used to evaluate the relationship between sediment transport speed (va) and current speed (V), the corresponding ratio being consistent with the range of values reported by several other authors. Finally, some minor, although still significant, differences are detected in some granulometric parameters as well as in the profile shape. Determining the reason for these discrepancies could enhance our current knowledge about the factors controlling short-term beach profile responses.  相似文献   
179.
Expected seasonal variations in methane concentrations and diffusive fluxes from surficial sediments into near-bottom waters were investigated in autumn 2012 and winter 2013 in the Curonian and Vistula lagoons of the Baltic Sea, expanding on earlier findings for summer 2011. Methane concentrations in bottom sediments (upper ca. 2 cm) generally ranged from ca. 1 to 1,000 μmol/dm3, and in near-bottom waters from ca. 0 to 1 μmol/l. Highest concentrations were found in the Curonian Lagoon, plausibly explained by the influence of freshwater conditions and finer-grained, organic-rich sediments. Vistula Lagoon methane concentrations and fluxes are dampened by periodic saline water inflow from the open sea, intensifying sulphate reduction. Calculated diffusive methane fluxes from the upper sediment layer (usually 0–5 cm, i.e. excluding any fluffy layer) into near-bottom waters were highest—2.48 mmol/(m2 day)—in clayey silts of the Curonian Lagoon in autumn (September) 2012, contrasting strongly with the minimum value of 0.002 mmol/(m2 day) observed there in February 2013 under ice-covered conditions. Seasonal and even weekly variations in methane dynamics can be largely explained by two main drivers, i.e. wind and temperature, operating at various spatiotemporal scales via, for example, wind wave-induced resuspension of bottom sediments, and involving regional weather patterns including autumnal low-pressure zones over the Gulf of Gdansk.  相似文献   
180.
The Southeastern portion of the East African Rift System reactivates Mesozoic transform faults marking the separation of Madagascar from Africa in the Western Indian Ocean. Earlier studies noted the reactivation of the Davie Fracture Zone in oceanic lithosphere as a seismically active extensional fault, and new 3D seismic reflection data and exploration wells provide unprecedented detail on the kinematics of the sub-parallel Seagap fault zone in continental/transitional crust landward of the ocean-continent transition. We reconstruct the evolution of the seismically active Seagap fault zone, a 400-km-long crustal structure affecting the Tanzania margin, from the late Eocene to the present day. The Seagap fault zone is represented by large-scale localized structures affecting the seafloor and displaying growth geometries across most of the Miocene sediments. The continuous tectonic activity evident by our seismic mapping, as well as 2D deep seismic data from literature, suggests that from the Middle-Late Jurassic until 125 Ma, the Seagap fault acted as a regional structure parallel to, and coeval with, the dextral Davie Fracture Zone. The Seagap fault then remained active after the cessation of both seafloor spreading in the Somali basin and strike-slip activity on the Davie Fracture Zone, till nowaday. Its architecture is structurally expressed through the sequence of releasing and restraining bends dating back at least to the early Neogene. Seismic sections and horizon maps indicate that those restraining bends are generated by strike-slip reactivation of Cretaceous structures till the Miocene. Finally based on the interpretation of edge-enhanced reflection seismic surfaces and seafloor data, we shows that, by the late Neogene, the Seagap fault zone switched to normal fault behaviour. We discuss the Seagap fault's geological and kinematic significance through time and its current role within the microplate system in the framework of the East African rift, as well as implications for the evolution and re-activation of structures along sheared margins. The newly integrated datasets reveal the polyphase deformation of this margin, highlighting its complex evolution and the implications for depositional fairways and structural trap and seal changes through time, as well as potential hazards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号