首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   31篇
  国内免费   2篇
测绘学   36篇
大气科学   44篇
地球物理   155篇
地质学   161篇
海洋学   31篇
天文学   85篇
综合类   2篇
自然地理   40篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   9篇
  2019年   14篇
  2018年   26篇
  2017年   23篇
  2016年   22篇
  2015年   25篇
  2014年   25篇
  2013年   32篇
  2012年   20篇
  2011年   26篇
  2010年   22篇
  2009年   31篇
  2008年   25篇
  2007年   27篇
  2006年   30篇
  2005年   17篇
  2004年   18篇
  2003年   8篇
  2002年   19篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有554条查询结果,搜索用时 0 毫秒
551.
Hundreds of natural catastrophes occur worldwide every year—there were 780 loss events per year on average over the last 10 years. Since 1980, these disasters have claimed over two million lives and caused losses worth US$ 3,000 billion. The deadliest disasters were caused by earthquakes: the tsunami following the Sumatra quake (2004) and the Haiti earthquake (2010) claimed more than 220,000 lives each. The Great East Japan Earthquake of 11 March 2011 was the costliest natural disaster of all times, with total losses of US$ 210 billion. Hurricane Katrina, in 2005, was the second costliest disaster, with total losses of US$ 140 billion (in 2010 values). To ensure that high-quality natural disaster analyses can be performed, the data have to be collected, checked and managed with a high degree of expertise and professionality. Scientists, governmental and non-governmental organisations and the finance industry make use of global databases that contain losses attributable to natural catastrophes. At present, there are three global and multi-peril loss databases: NatCatSERVICE (Munich Re), Sigma (Swiss Re) and EM-Dat (Centre for Research on the Epidemiology of Disasters). They are supplemented by numerous databases focusing on national or regional issues, certain hazards and specific sectors. This paper outlines the criteria and definitions relating to how global and multi-peril databases are operated, and the efforts being made to ensure consistent and internationally recognised standards of data management. In addition, it presents the concept and methodology underlying the NatCatSERVICE database, and points out the many challenges associated with data acquisition and data management.  相似文献   
552.
Among the risks of CO2 storage is the potential of CO2 leakage into overlaying formations and near-surface potable aquifers. Through a leakage, the CO2 can intrude into protected groundwater resources, which can lead to groundwater acidification followed by potential mobilisation of heavy metals and other trace metals through mineral dissolution or ion exchange processes. The prediction of pH buffer reactions in the formations overlaying a CO2 storage site is essential for assessing the impact of CO2 leakages in terms of trace metal mobilisation. For buffering the pH-value, calcite dissolution is one of the most important mechanisms. Although calcite dissolution has been studied for decades, experiments conducted under elevated CO2 partial pressures are rare. Here, the first study for column experiments is presented applying CO2 partial pressures from 6 to 43 bars and realising a near-natural flow regime. Geochemical calculations of calcite dissolution kinetics were conducted using PHREEQC together with different thermodynamic databases. Applying calcite surface areas, which were previously acquired by N2-BET or calculated based on grain diameters, respectively, to the rate laws according to Plummer et al. (Am J Sci 278:179–216, doi:10.2475/ajs.278.2.179, 1978) or Palandri and Kharaka (US Geol Surv Open file Rep 2004–1068:71, 2004) in the numerical simulations led to an overestimation of the calcite dissolution rate by up to three orders of magnitude compared to the results of the column experiments. Only reduction of the calcite surface area in the simulations as a fitting procedure allowed reproducing the experimental results. A reason may be that the diffusion boundary layer (DBL), which depends on the groundwater flow velocity and develops at the calcite grain surface separating it from the bulk of the solution, has to be regarded: The DBL leads to a decrease in the calcite dissolution rate under natural laminar flow conditions compared to turbulent mixing in traditional batch experiments. However, varying the rate constants by three orders of magnitudes in a field scale PHREEQC model simulating a CO2 leakage produced minor variations in the pH buffering through calcite dissolution. This justifies the use of equilibrium models when calculating the calcite dissolution in CO2 leakage scenarios for porous aquifers and slow or moderate groundwater flow velocities. However, the selection of the thermodynamic database has an impact on the dissolved calcium concentration, leading to an uncertainty in the simulation results. The resulting uncertainty, which applies also to the calculated propagation of an aquifer zone depleted in calcite through dissolution, seems negligible for shallow aquifers of approximately 60 m depth, but amounts to 35 % of the calcium concentration for aquifers at a depth of approximately 400 m.  相似文献   
553.
Underground land use can play a significant role in future concepts of energy and gas storage and requires an improved understanding of the parameters of potential storage formations (saline aquifers), for instance of porosity and permeability, and also of mineralogical and gas compositions. This study aims at providing data examples and calculating vertical spatial variations through variogram analyses of important North German geological reservoirs from Dogger, Rhaetian, Middle Buntsandstein, and Rotliegend (Sub)Groups and Formations, focusing on the western part of the North German Basin. Vertical correlation lengths of porosity and permeability data range between 0 and 30 m, while most results are calculated at approximately 2–4 m and do not show relevant differences among the evaluated formations. In the majority of the regarded formations, the Kozeny–Carman relationship between porosity and permeability is supported as long as low porosity and permeability values are excluded from the evaluation. Mineral percentages varied significantly among the evaluated sediments. Besides quartz, ankerite is the main compound in the Dogger Group, while feldspars and clay minerals were more frequent in the Rhaetian, Middle Buntsandstein, and Rotliegend sediments. Methane was the main gas compound in the reservoirs, followed by nitrogen, ethane, and carbon dioxide. This study serves as preparatory work to allow for the parameterization of geological models and a subsequent simulation of fluid transport to evaluate (long-term) safety and impacts of geothermal and gas storage projects.  相似文献   
554.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号