首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   13篇
  国内免费   3篇
测绘学   17篇
大气科学   65篇
地球物理   60篇
地质学   115篇
海洋学   30篇
天文学   54篇
自然地理   40篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   11篇
  2014年   17篇
  2013年   19篇
  2012年   10篇
  2011年   25篇
  2010年   17篇
  2009年   21篇
  2008年   9篇
  2007年   11篇
  2006年   15篇
  2005年   11篇
  2004年   8篇
  2003年   18篇
  2002年   14篇
  2001年   6篇
  2000年   9篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1984年   8篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1960年   1篇
  1889年   1篇
排序方式: 共有381条查询结果,搜索用时 62 毫秒
91.
92.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   
93.
94.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
95.
96.
Soil moisture is an important driver of growth in boreal Alaska, but estimating soil hydraulic parameters can be challenging in this data-sparse region. Parameter estimation is further complicated in regions with rapidly warming climate, where there is a need to minimize model error dependence on interannual climate variations. To better identify soil hydraulic parameters and quantify energy and water balance and soil moisture dynamics, we applied the physically based, one-dimensional ecohydrological Simultaneous Heat and Water (SHAW) model, loosely coupled with the Geophysical Institute of Permafrost Laboratory (GIPL) model, to an upland deciduous forest stand in interior Alaska over a 13-year period. Using a Generalized Likelihood Uncertainty Estimation parameterisation, SHAW reproduced interannual and vertical spatial variability of soil moisture during a five-year validation period quite well, with root mean squared error (RMSE) of volumetric water content at 0.5 m as low as 0.020 cm3/cm3. Many parameter sets reproduced reasonable soil moisture dynamics, suggesting considerable equifinality. Model performance generally declined in the eight-year validation period, indicating some overfitting and demonstrating the importance of interannual variability in model evaluation. We compared the performance of parameter sets selected based on traditional performance measures such as the RMSE that minimize error in soil moisture simulation, with one that is designed to minimize the dependence of model error on interannual climate variability using a new diagnostic approach we call CSMP, which stands for Climate Sensitivity of Model Performance. Use of the CSMP approach moderately decreases traditional model performance but may be more suitable for climate change applications, for which it is important that model error is independent from climate variability. These findings illustrate (1) that the SHAW model, coupled with GIPL, can adequately simulate soil moisture dynamics in this boreal deciduous region, (2) the importance of interannual variability in model parameterisation, and (3) a novel objective function for parameter selection to improve applicability in non-stationary climates.  相似文献   
97.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
98.
99.
Effect of climate change on watershed system: a regional analysis   总被引:1,自引:0,他引:1  
Climate-induced increase in surface temperatures can impact hydrologic processes of a watershed system. This study uses a continuous simulation model to evaluate potential implications of increasing temperature on water quantity and quality at a regional scale in the Connecticut River Watershed of New England. The increase in temperature was modeled using Intergovernmental Panel on Climate Change (IPCC) high and low warming scenarios to incorporate the range of possible temperature change. It was predicted that climate change can have a significant affects on streamflow, sediment loading, and nutrient (nitrogen and phosphorus) loading in a watershed. Climate change also influences the timing and magnitude of runoff and sediment yield. Changes in variability of flows and pollutant loading that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed. Potential impacts of these changes include deficit supplies during peak seasons of water demand, increased eutrophication potential, and impacts on fish migration.  相似文献   
100.
This study examines the electricity in two thunderstorms, typical for their respective locales (the Great Plains and the New Mexico mountains), by modeling them as a set of steady-state horizontal layers of external currents. The model electric sources, corresponding to the charge separation processes in the thundercloud, are embedded in an exponential conducting atmosphere. The source parameters are determined by fitting the model electric field to measured profiles. The resulting currents to the ionosphere (i.e., the Wilson current) from the two storms are 0.53 A and 0.16 A, while the calculated electrical energies of the storms are 2.3 × 1010 J and 2.8 × 109 J, respectively. The more vigorous storm is estimated to transfer 16 000 C in the global circuit during 8.5 h of its lifetime, while the weaker mountain storm transferred about 1200 C in its entire 2-h lifetime. Removal of the screening charge layer from above the updraft region in one modeled storm leads to only a small increase in the net Wilson current of less than 3%, while it provides a substantial local disturbance of the electric field. Overall, the model findings indicate that differences in the Wilson currents and electrical energies of the two storms result from differences in their internal dynamical and electrical structures as well as their geographical locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号