首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3361篇
  免费   153篇
  国内免费   44篇
测绘学   86篇
大气科学   271篇
地球物理   720篇
地质学   1303篇
海洋学   240篇
天文学   603篇
综合类   12篇
自然地理   323篇
  2021年   39篇
  2020年   61篇
  2019年   81篇
  2018年   87篇
  2017年   99篇
  2016年   116篇
  2015年   100篇
  2014年   118篇
  2013年   175篇
  2012年   114篇
  2011年   168篇
  2010年   150篇
  2009年   199篇
  2008年   173篇
  2007年   169篇
  2006年   154篇
  2005年   137篇
  2004年   133篇
  2003年   98篇
  2002年   93篇
  2001年   67篇
  2000年   66篇
  1999年   59篇
  1998年   53篇
  1997年   55篇
  1996年   54篇
  1995年   42篇
  1994年   28篇
  1993年   30篇
  1992年   27篇
  1991年   40篇
  1990年   22篇
  1989年   26篇
  1988年   31篇
  1987年   37篇
  1986年   23篇
  1985年   30篇
  1984年   27篇
  1983年   18篇
  1982年   27篇
  1981年   31篇
  1980年   28篇
  1979年   17篇
  1978年   15篇
  1977年   20篇
  1976年   17篇
  1975年   13篇
  1974年   26篇
  1973年   21篇
  1971年   14篇
排序方式: 共有3558条查询结果,搜索用时 15 毫秒
921.
922.
A scheme for computing surface fluxes from mean flow observations   总被引:3,自引:0,他引:3  
A computational scheme is developed for estimating turbulent surface stress, sensible heat flux and humidity flux from mean velocity, temperature and humidity at a single height in the atmospheric surface layer; conditions at this reference level are presumed known from observations or from a numerical atmospheric circulation model. The method is based on coupling a Monin-Obukhov similarity profile to a force-restore formulation for the evolution of surface soil temperature to yield the local values of shear stress, heat flux and surface temperature. A self-contained formulation is presented including parameterizations for solar and infrared radiant flux at the surface.In addition to reference-level mean flow properties, the parameters needed to implement the scheme are thermal heat capacity of the soil, surface aerodynamic roughness, latitude, solar declination, surface albedo, surface emissivity and atmospheric transmissivity.Sample calculations are presented for (a), constant atmospheric forcing at the reference level, and (b) variable atmospheric forcing corresponding to Kahle's (1977) measurements of windspeed, air temperature and radiometer soil surface temperature under dry vegetatively sparse conditions in the Mohave Desert in California. The latter case simulated the observed diurnal variations resonably well for the parameters used.Consultant, Atmospheric Sciences Division, Department of Energy and Environment, Brookhaven National Laboratory, Upton, N.Y., pc11973, U.S.A.  相似文献   
923.
Ground retreat was monitored on two vegetated and two unvegetated profiles over a five-year period. The average annual retreat of the two unvegetated profiles was 5.84 mm and 3.62 mm; that of the two vegetated profiles 2.34 mm and 2.07 mm. Slope evolution was controlled by the mid-slope-ward migration of two zones of accelerated erosion and the resulting replacement of a central rectilinear slope segment by the upper and lower slope elements.  相似文献   
924.
Examples of fenitization of pure quartzites provide valuable insight into the relative mobility of elements. This investigation of fenites from the Borralan complex shows that rare-earth elements are mobile and added during fenitization of quartzite. The resulting normalized patterns are distinctive in their enrichment of the light rare earths and steep drops in the interval Nd-Eu. In terms of rare-earth geochemistry, no difference can be found between the sodic and the potassic trends of fenitization at Borralan. Concentrations of mobile elements define straight-line plots through the origin, heretofore considered a criterion indicative of a fractional crystallization process.Present address: Department of Geological Sciences, McGill University, 3450 University Street, Montreal, Que. H3A 2A7, Canada  相似文献   
925.
In most lakes, phosphorus (P) is the nutrient controlling the trophic state. Thus, for effective control of eutrophication, the uncertainty in P-loading should be encoded as a probability density function (pdf). Specifically, the pdf of P-loading Y from non-point agricultural sources is sought by means of an event-based stochastic model.P-loading events are triggered by precipitation events (X1, X2, T), in which X1 is the rainfall amount, X2 the duration, and T the interarrival time between events. (X1, X2) are dependent random variables, while T is assumed to be exponentially distributed. The precipitation event causes runoff, which carries dissolved P into the lake with a concentration C1 and sediment yield, Z, which carries fixed or sorbed P into the lake in a fraction C2 of Z. Seasonal loading of P is calculated by adding random numbers of random variables. The model accounts separately for dissolved P and sorbed P. Explicit expressions are given for the mean and variance of each type of P-loadings. The case study of a sub-watershed of Lake Balaton, Hungary, is used to illustrate the methodology. Precipitation data, empirical rainfall-runoff-sediment yield relationships and a small number of observations of events are used to calibrate the model and estimate the means and variances of loading per event and per season. Then a simulation method is used to estimate complete pdf of these random variables. Use of the model for alternative methods of controlling P-loading is briefly discussed, as well as the economics of control.  相似文献   
926.
Constituent minerals from three alpine lherzolites (Beni Bouchera, Morocco; Lanzo, Italy; and Ronda, Spain) and a clinopyroxene from the Othris complex, Greece, reveal the following range in Sr isotopic composition: clinopyroxenes, 0.70228–0.70370; orthopyroxenes, 0.70265–0.70429; and olivines, 0.70290–0.70831. Collectively the data: (1) indicate that whole-rock lherzolites (weighted recalculations of 87Sr/86Sr= 0.7025–0.7028) have isotopic compositions which attest to a simple mantle origin and not the complex models proposed to date; (2) are incompatible with the published range for alpine peridotites 0.7063–0.7290; (3) reveal either similar or different isotopic compositions for coexisting minerals, the latter possibly being the result of Rb mobility and introduction of radiogenic Sr into the peridotite system; and (4) indicate the past existence of liquids with “alkalic” affinities within the lherzolite framework. The lherzolites are therefore believed to be residual, having experienced a small degree of partial melting.  相似文献   
927.
Ultramafic inclusions from San Carlos, Arizona, are classified into two groups. Group I inclusions are dominated by magnesian (Mg/Mg + ΣFe= 0.86 – 0.91), olivine-rich peridotites containing Cr-rich clinopyroxene and spinel. The less abundant Group I pyroxenites (containing Mg- and Cr-rich pyroxenes) occur as discrete inclusions and as portions of composite inclusions where they have a sharp, planar interface with lherzolite. Group II inclusions are dominated by clinopyroxene-rich peridotites containing Al- and Ti-rich augite and commonly abundant, Al-rich spinel. Compared to Group I inclusions, they are more Fe-rich (Mg/Mg + ΣFe= 0.62 – 0.78) and more hetereogeneous in composition and modal proportions. Similar groups occur at many ultramafic inclusion localities.Our petrographic and geochemical results lead to the following conclusions. Olivine-rich Group I inclusions are not genetically related to the host basanite, and they are formed from two components. Component A is a partial melting residue; it comprises the major portion of these inclusions and determines the modal mineralogy and major and compatible trace element composition. Component B results from a small degree (<5%) of garnet peridotite melting (probably, within the low-velocity zone). This highly LIL-element-enriched melt has migrated upwards into the overlying component A where it crystallized primarily as clinopyroxene and amphibole, and thus, introduced LIL elements into the residual component A. Subsequent cooling and subsolidus recrystallization have removed textural evidence of this mixing. This model has also been proposed for olivine-rich Group I inclusions from Victoria, Australia. At Victoria and San Carlos some relatively clinopyroxene-rich Group I lherzolites are not contaminated by component B, and they represent the best estimates of upper mantle composition prior to melting. Group I orthopyroxenites may be fragments of tectonic layers formed in lherzolite, but they could also be early cumulates (now metamorphosed) from the melt in equilibrium with component A. Group I clinopyroxenites have geochemical features of clinopyroxene in equilibrium with a magma. Thus, they could also represent early cumulates (now metamorphosed) from a magma unrelated to the host basanite. Alternatively, their geochemical characteristics could result from more complex models such as residues from partial remelting of pyroxenite dikes and veins or intradike segregation processes such as filter pressing. All Group II inclusions studied appear to be cumulates derived from a SiO2-undersaturated magma, possibly an early magma in the same volcanic episode which culminated with eruption of the host basanite. The poikilitic texture of amphibole-rich (kaersutite) inclusions is consistent with a cumulate origin. The bulk compositions of Group II inclusions are not equivalent to typical basaltic compositions.  相似文献   
928.
Spinels from cumulus and non-cumulus members of the Othris ophiolite display a considerable variation in composition. Cumulus picrites and gabbros contain either a primary chromite and/or a reaction spinel formed by reaction with co-existing silicates (Cr-Al varia tion) or intercumulus liquid (Cr-Fe variation). Non-cumulus peridotites contain spinels which vary along a Cr-Al trend. Harzburgites contain a Cr-spinel and lherzolites a more aluminous spinel. The occurence of gabbroic segregations within the host lherzolite appears to affect the spinel chemistry. Spinels adjacent to these plagioclase—diopside veinlets are richer in aluminium than the spinels scattered within the depleted lherzolite surrounding the veinlet. [Protoclastic harzburgites contain a highly aluminous spinel phase either as an exsolution phase within pyroxenes or as a groundmass spinel.] The Cr-Al variation of the peridotites is believed to have resulted from interaction with interstitial aluminous liquid—in situ basaltic melt from a fused peridotite?  相似文献   
929.
Summary Sarkinite is a basic manganese arsenate, Mn2AsO4(OH). The lattice parameters are:a=12.779 (2) Å,b=13.596 (2) Å,c=10.208 (2) Å, =108°53 (6). Space groupP21/a,Z=16. The crystal structure has been solved by direct methods from three-dimensional X-ray diffractometer data and refined by least-squares methods toR=0.052 for 3519 independent reflections. The crystal structure is built up by a three-dimensional framework of MnO4(OH)2 octahedra, MnO4(OH) trigonal bipyramids and AsO4 tetrahedra, as found in wagnerite. Isotypy of sarkinite with triploidite is confirmed.
Die Kristallstruktur des Sarkinits, Mn2AsO4(OH)
Zusammenfassung Die Kristallstruktur des basischen Manganarsenates Sarkinit, Mn2AsO4(OH), mit den Gitterkonstantena=12,779 (2) Å,b=13,596 (2) Å,c=10,208 (2) Å, =108°53 (6). RaumgruppeP21/a,Z=16, wurde mit dreidimensionalen Röntgendiffraktometermessungen durch direkte Methoden gelöst und nach dem kleinste-Quadrate-Verfahren verfeinert (R=0,052 für 3519 unabhängige Reflexe). Die Struktur besteht aus einem dreidimensionalen Gerüst aus MnO4(OH)2-Oktaedern, trigonalen Bipyramiden von MnO4(OH) und AsO4-Tetraedern wie in Wagnerit. Die Isotypie von Sarkinit mit Triploidit wurde bestätigt.


With 1 Figure  相似文献   
930.
A little known observation that exposure to sublethal concentrations of detergent cause fatal abnormalities in the second generation of a polychaete has been followed up and similar abnormalities have been observed in the first or second generation of larvae exposed to sublethal concentrations of copper and zinc. Few toxicity tests extend beyond the responses of the exposed individuals. The discovery of a delayed reaction to sublethal concentrations of common contaminants of the sea has unknown but potentially important ecological implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号