首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   836篇
  免费   36篇
  国内免费   9篇
测绘学   5篇
大气科学   66篇
地球物理   243篇
地质学   302篇
海洋学   89篇
天文学   91篇
综合类   3篇
自然地理   82篇
  2023年   4篇
  2021年   7篇
  2020年   10篇
  2019年   16篇
  2018年   23篇
  2017年   15篇
  2016年   29篇
  2015年   19篇
  2014年   13篇
  2013年   64篇
  2012年   23篇
  2011年   39篇
  2010年   42篇
  2009年   53篇
  2008年   41篇
  2007年   31篇
  2006年   27篇
  2005年   26篇
  2004年   23篇
  2003年   33篇
  2002年   23篇
  2001年   10篇
  2000年   19篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   8篇
  1995年   13篇
  1993年   12篇
  1992年   7篇
  1991年   6篇
  1990年   12篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   19篇
  1984年   21篇
  1983年   20篇
  1982年   18篇
  1981年   17篇
  1980年   8篇
  1979年   10篇
  1978年   13篇
  1977年   9篇
  1976年   4篇
  1975年   7篇
  1974年   5篇
  1973年   6篇
  1968年   3篇
排序方式: 共有881条查询结果,搜索用时 893 毫秒
71.
Geomagnetic paleointensity determination have been made by the Thellier method using samples from 27 sites in Bulgaria. The samples include bricks, specimens taken from historic kilns, from prehistoric hearths and the sites of ancient fires. The ages of the samples, which range from about 4500 B.C. to the 19th century A.D., have been determined partly by the 14C method and partly from archaeological evidence. The (residual NMR)-(induced TRM) diagrams tend to be less linear for the prehistoric samples either due to weathering or because the NRM is not a total TRM.  相似文献   
72.
73.
Small polystyrene beads are becoming a common component of the plankton in certain areas. They are derived from the effluents of polystyrene manufacturers.  相似文献   
74.
75.
The temporal variability in currents, temperature, and particulate matter concentration were measured in the Mississippi Canyon axis where the thalweg was 300 m deep from May–July and August–November 1998 using current meters, thermographs, a light-scattering sensor, and sediment traps. Canyon sediments were sampled by coring and observed using an ROV video camera. Currents in the upper Mississippi Canyon generally oscillated up/down canyon with diurnal periodicity and were bottom-intensified. Mean current speed at 3.5 mab was approximately 8 cm s?1 during both deployments, reaching maximum speeds of over 50 cm s?1 under normal conditions. Based on current velocities, critical bed shear stress for resuspension of canyon-floor sediments was exceeded about 30% of the time during both deployments. In late September, Hurricane Georges passed 150 km NE of the study site, significantly intensifying current velocities, bed shear stress, resuspension, trap fluxes and temperature fluctuations. As the hurricane passed, maximum current speed reached 68 cm?s and temperature decreased ~7 °C in less than two hours. Critical bed shear stress for sediment resuspension was exceeded approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was the five-fold (and perhaps 70–130 fold) increase in trap fluxes and compositional similarities between canyon surface sediment and material collected by traps.  相似文献   
76.
Fossil Chironomidae assemblages (with a few Chaoboridae and Ceratopogonidae) from Zagoskin and Burial Lakes in western Alaska provide quantitative reconstructions of mean July air temperatures for periods of the late-middle Wisconsin (~39,000–34,000 cal yr B.P.) to the present. Inferred temperatures are compared with previously analyzed pollen data from each site summarized here by indirect ordination. Paleotemperature trends reveal substantial differences in the timing of climatic warming following the late Wisconsin at each site, although chronological uncertainty exists. Zagoskin Lake shows early warming beginning at about 21,000 cal yr B.P., whereas warming at Burial Lake begins ~4000 years later. Summer climates during the last glacial maximum (LGM) were on average ~3.5 °C below the modern temperatures at each site. Major shifts in vegetation occurred from ~19,000 to 10,000 cal yr B.P. at Zagoskin Lake and from ~17,000 to 10,000 cal yr B.P. at Burial Lake. Vegetation shifts followed climatic warming, when temperatures neared modern values. Both sites provide evidence of an early postglacial thermal maximum at ~12,300 cal yr B.P. These chironomid records, combined with other insect-based climatic reconstructions from Beringia, indicate that during the LGM: (1) greater continentality likely influenced regions adjacent to the Bering Land Bridge and (2) summer climates were, at times, not dominated by severe cold.  相似文献   
77.
Mary C. Bourke 《Icarus》2010,205(1):183-197
Barchan dune asymmetry refers to the extension of one barchan limb downwind. It is a common dune form on Earth and also occurs on Mars and Titan. A new classification of barchan limbs is presented where three types of limb morphology are identified: linear, kinked and beaded. These, along with other dune-scale morphological signatures, are used to identify three of the causes of barchan asymmetry on Mars: bi-directional winds, dune collision and the influence of inclined topography.The potential for specific dune asymmetric morphologies to indicate aspects of the formative wind regime on planetary surfaces is shown. For example, the placement of dune limbs can indicate the general direction and relative strength of formative oblique winds; an extreme barchan limb length may indicate a long duration oblique wind; a kinked limb may be evidence of the passage of a storm; beaded limbs may represent surface-wave instabilities caused by an increase in wind energy parallel to the dune. A preliminary application of these signatures finds evidence for bi-modal winds on Mars. However, these and other morphological signatures of wind direction and relative strength should be applied to planetary landforms with caution as more than one process (e.g., bi-modal winds and collision) may be operating together or sequentially on the dunefield. In addition, analysis should be undertaken at the dunefield scale and not on individual dunes. Finally, morphological data should be acquired from similar-scale dunes within a dunefield.In addition to bi-modal wind regimes on Mars, the frequent parallel alignment of the extended barchan limb to the dune suggests that dune collision is also an important cause of asymmetry on Mars. Some of the more complex dunefield patterns result from a combination of dune collision, limb extension and merging with downwind dunes.Dune asymmetric form does not inhibit dune migration in the Namib Desert or on Mars. Data from the Namib suggest that dune migration rates are similar for symmetric and asymmetric dunes. Further modeling and field studies are needed to refine our understanding of the potential range of limb and dune morphologies that can result from specific asymmetry causes.  相似文献   
78.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   
79.
There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.  相似文献   
80.
Numerical models constitute the most advanced physical-based methods for modeling complex ground water systems. Spatial and/or temporal variability of aquifer parameters, boundary conditions, and initial conditions (for transient simulations) can be assigned across the numerical model domain. While this constitutes a powerful modeling advantage, it also presents the formidable challenge of overcoming parameter uncertainty, which, to date, has not been satisfactorily resolved, inevitably producing model prediction errors. In previous research, artificial neural networks (ANNs), developed with more accessible field data, have achieved excellent predictive accuracy over discrete stress periods at site-specific field locations in complex ground water systems. In an effort to combine the relative advantages of numerical models and ANNs, a new modeling paradigm is presented. The ANN models generate accurate predictions for a limited number of field locations. Appending them to a numerical model produces an overdetermined system of equations, which can be solved using a variety of mathematical techniques, potentially yielding more accurate numerical predictions. Mathematical theory and a simple two-dimensional example are presented to overview relevant mathematical and modeling issues. Two of the three methods for solving the overdetermined system achieved an overall improvement in numerical model accuracy for various levels of synthetic ANN errors using relatively few constrained head values (i.e., cells), which, while demonstrating promise, requires further research. This hybrid approach is not limited to ANN technology; it can be used with other approaches for improving numerical model predictions, such as regression or support vector machines (SVMs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号