首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   5篇
  国内免费   6篇
测绘学   11篇
大气科学   9篇
地球物理   20篇
地质学   40篇
海洋学   7篇
天文学   3篇
综合类   5篇
自然地理   1篇
  2022年   7篇
  2021年   4篇
  2020年   13篇
  2019年   5篇
  2018年   12篇
  2017年   9篇
  2016年   19篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   5篇
  2011年   1篇
  2009年   3篇
  2001年   1篇
  1993年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
51.
Many estuaries contain sandy beaches that provide habitats and offer protective buffers for wetlands and infrastructure, alongside cultural and recreational resources. Research underpinning coastal management tends to focus on tide- and swell-dominated sandy beaches, but little attention is given to beaches in estuaries and bays (BEBs) that exist along a continuum of wind/swell wave, tide and riverine influence. BEBs are subject to less wave energy than open coast locations because of the generally narrow window of directions for which ocean waves can propagate through the entrance. However, when storm wave direction coincides with the orientation of the estuary or bay entrance, waves can penetrate several kilometres inside. Here we focus on eight BEBs in two major bays/estuaries in Sydney, Australia and present observations from before and after a major extratropical storm with waves from an atypical direction in June 2016. We quantify magnitudes of beach erosion and recovery rates for 3 years post-storm. We show that when high-energy storm waves penetrate bays and estuaries, BEBs can undergo up to 100% of subaerial beach erosion. Three years after the storm, only 5 of the 29 (17%) eroded subaerial beach profiles had recovered to their pre-storm volume. This is likely due to the lack of low-frequency, beach-building waves at BEBs under modal weather conditions in between storms, in contrast to open coast beaches. We also show that the recovery of BEBs may be limited by the absence of adjacent sediment reservoirs due to the dominance of tidal processes mid-channel. Our study highlights the unique behaviour of BEBs relative to beaches on the open coast, and that shifting wave direction needs to be considered in long-term beach resilience under climate change. © 2020 John Wiley & Sons, Ltd.  相似文献   
52.
Ocean Dynamics - The surface enthalpy fluxes (latent and sensible heat fluxes) provide the necessary energy to intensify tropical cyclones (TCs). The surface momentum fluxes modify the intensity of...  相似文献   
53.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   
54.
Natural Resources Research - The uniaxial compressive strength and static Young’s modulus are among the key design parameters typically used in geotechnical engineering projects. In this...  相似文献   
55.
A large agricultural area located in 20 km north of the city of Mashhad in the north-east of Iran is subject to land subsidence. The subsidence rate was achieved in a couple of sparse points by precise leveling between 1995 and 2005, and continuous GPS measurements obtained from 2005 to 2006. In order to study the temporal behavior of the deformation in high spatial resolution, the small baseline subset (SBAS) algorithm was used to generate the interferometric SAR time series analysis. Time series analysis was performed using 19 interferograms calculated from 12 ENVISAT ASAR data spanning between 2003 and 2006. The time series results exhibited that the area is subsiding continuously without a significant seasonal effect. Mean LOS deformation velocity map obtained from time series analysis demonstrated a considerable subsidence rate up to 24 (cm/yr). In order to evaluate the time series analysis results, continuous GPS measurements as a geodetic approach were applied. The comparisons showed a great agreement between interferometry results and geodetic technique. Moreover, the information of various piezometric wells distributed in the area corresponding to 1995 to 2005 showed a significant decline in water table up to 20 meters. The correlation between the piezometric information and the surface deformation at well’s locations showed that the subsidence occurrence in Mashhad is due to the excess groundwater withdrawal.  相似文献   
56.
57.
A one-dimensional Explicit Time-dependent Tilting cloud Model (ETTM) that separates updraft and downdraft columns and takes into account the effect of cloud tilting on precipitation is introduced and incorporated into the Advanced Regional Prediction System (ARPS). Results of the stand-alone ETTM are compared with that of cloud resolving simulations using the ARPS mesoscale model. Inter-comparison is performed by qualitative examination of simulated parameters such as vertical distribution of fluxes of mass, heat, and moisture. Although there is a great degree of similarity between the vertical profiles, ETTM systematically underestimates magnitudes of all fluxes. Sensitivity tests carried with ETTM show that the effect of varying cloud radius and tilting angle is considerable on the simulated cloud behavior. Increasing the cloud radius, results in a corresponding increase in fluxes of mass, heat, and moisture, while increasing the cloud tilt angle has the opposite effect. Since ETTM showed promise as a suitable sub-grid cumulus parameterization scheme; it was incorporated into ARPS as an additional cumulus parameterization scheme (CPS) to be available for the wider community. Results of simulations using ETTM and other CPSs already available in ARPS were compared for 2, 4 and 10 km grid spacings to assess its utility. Simulation results of the 2 km grid showed that at this resolution, the simulated time series of updraft velocities using the new scheme (ETTM) compared well with the results of other schemes in the ARPS model. The simulations with horizontal resolution of 4 km that was compared with the convection resolving reference run (No-CPS-2KM) showed almost consistent results for all schemes except for one using KF scheme. The results of the simulation with the ETTM scheme and other schemes in the model with resolution of 10 km showed that at this resolution, there is not significant difference between the uses of these schemes.  相似文献   
58.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   
59.
Low‐flow events can cause significant impacts to river ecosystems and water‐use sectors; as such, it is important to understand their variability and drivers. In this study, we characterise the variability and timing of annual total frequency of low‐streamflow days across a range of headwater streams within the continental United States. To quantify this, we use a metric that counts the annual number of low‐flow days below a given threshold, defined as the cumulative dry days occurrence (CDO). First, we identify three large clusters of stream gauge locations using a Partitioning Around Medoids (PAM) clustering algorithm. In terms of timing, results reveal that for most clusters, the majority of low‐streamflow days occur from the middle of summer until early fall, although several locations in Central and Western United States also experience low‐flow days in cold seasons. Further, we aim to identify the regional climate and larger scale drivers for these low‐streamflow days. Regionally, we find that precipitation deficits largely associate with low‐streamflow days in the Western United States, whereas within the Central and Eastern U.S. clusters, high temperature indicators are also linked to low‐streamflow days. In terms of larger scale, we examine sea surface temperature (SST) anomalies, finding that extreme dry years exhibit a high degree of co‐occurrence with different patterns of warmer SST anomalies across the Pacific and Northern Atlantic Oceans. The linkages identified with regional climate and SSTs offer promise towards regional prediction of changing conditions of low‐streamflow events.  相似文献   
60.
The effects of climate and land use/land cover (LULC) dynamics have directly affected the surface runoff and flooding events. Hence, current study proposes a full-packaged model to monitor the changes in surface runoff in addition to forecast of the future surface runoff based on LULC and precipitation variations. On one hand, six different LULC classes were extracted from Spot-5 satellite image. Conjointly, land transformation model (LTM) was used to detect the LULC pixel changes from 2000 to 2010 as well as predict the 2020 ones. On the other hand, the time series-autoregressive integrated moving average (ARIMA) model was applied to forecast the amount of rainfall in 2020. The ARIMA parameters were calibrated and fitted by latest Taguchi method. To simulate the maximum probable surface runoff, distributed soil conservation service-curve number (SCS-CN) model was applied. The comparison results showed that firstly, deforestation and urbanization have been occurred upon the given time, and they are anticipated to increase as well. Secondly, the amount of rainfall has non-stationary declined since 2000 till 2015 and this trend is estimated to continue by 2020. Thirdly, due to damaging changes in LULC, the surface runoff has been also increased till 2010 and it is forecasted to gradually exceed by 2020. Generally, model calibrations and accuracy assessments have been indicated, using distributed-GIS-based SCS-CN model in combination with the LTM and ARIMA models are an efficient and reliable approach for detecting, monitoring, and forecasting surface runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号