首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  国内免费   3篇
测绘学   3篇
大气科学   2篇
地球物理   45篇
地质学   22篇
海洋学   26篇
天文学   6篇
自然地理   11篇
  2022年   1篇
  2021年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   11篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有115条查询结果,搜索用时 500 毫秒
51.
The Aeolian Dust Experiment on Climate Impact (ADEC) was initiated in April 2000 as a joint five-year Japan–China project. The goal was to understand the impact of aeolian dust on climate via radiative forcing (RF). Field experiments and numerical simulations were conducted from the source regions in northwestern China to the downwind region in Japan in order to understand wind erosion processes temporal and spatial distribution of dust during their long-range transportation chemical, physical, and optical properties of dust and the direct effect of radiative forcing due to dust. For this, three intensive observation periods (IOP) were conducted from April 2002 to April 2004.The in situ and network observation results are summarized as follows: (1) In situ observations of the wind erosion process revealed that the vertical profile of moving sand has a clear size dependency with height and saltation flux and that threshold wind velocity is dependent on soil moisture. Results also demonstrated that saltation flux is strongly dependent on the parent soil size distribution of the desert surface. (2) Both lidar observations and model simulations revealed a multiple dust layer in East Asia. A numerical simulation of a chemical transport model, CFORS, illustrated the elevated dust layer from the Taklimakan Desert and the lower dust layer from the Gobi Desert. The global-scale dust model, MASINGAR, also simulated the dust layer in the middle to upper free troposphere in East Asia, which originated from North Africa and the Middle East during a dust storm in March 2003. Raman lidar observations at Tsukuba, Japan, found the ice cloud associated with the dust layer at an altitude of 6 to 9 km. Analysis from lidar and the radio-sonde observation suggested that the Asian dust acted as ice nuclei at the ice-saturated region. These results suggest the importance of dust's climate impact via the indirect effect of radiative forcing due to the activation of dust into ice nuclei. (3) Studies on the aerosol concentration indicated that size distributions of aerosols in downwind regions have bimodal peaks. One peak was in the submicron range and the other in the supermicron range. The main soluble components of the supermicron peak were Na+, Ca2+, NO3, and Cl. In the downwind region in Japan, the dust, sea salt, and a mixture of the two were found to be dominant in coarse particles in the mixed boundary layer. (4) Observation of the optical properties of dust by sky-radiometer, particle shoot absorption photometer (PSAP), and Nephelometer indicated that unpolluted dust at source region has a weaker absorption than originally believed.A sensitivity experiment of direct RF by dust indicated that single scattering albedo is the most important of the optical properties of dust and that the sensitivity of instantaneous RF in the shortwave region at the top of the atmosphere to the refractive index strongly depends on surface albedo. A global scale dust model, MASINGAR, was used for evaluation of direct RF due to dust. The results indicated the global mean RF at the top and the bottom of the atmosphere were − 0.46 and − 2.13 W m− 2 with cloud and were almost half of the RF with cloud-free condition.  相似文献   
52.
Much research has been conducted for physics‐based ground‐motion simulation to reproduce seismic response of soil and structures precisely and to mitigate damages caused by earthquakes. We aimed at enabling physics‐based ground‐motion simulations of complex three‐dimensional (3D) models with multiple materials, such as a digital twin (high‐fidelity 3D model of the physical world that is constructed in cyberspace). To perform one case of such simulation requires high computational cost and it is necessary to perform a number of simulations for the estimation of parameters or consideration of the uncertainty of underground soil structure data. To overcome this problem, we proposed a fast simulation method using graphics processing unit computing that enables a simulation with small computational resources. We developed a finite‐element‐based method for large‐scale 3D seismic response analysis with small programming effort and high maintainability by using OpenACC, a directive‐based parallel programming model. A lower precision variable format was introduced to achieve further speeding up of the simulation. For an example usage of the developed method, we applied the developed method to soil liquefaction analysis and conducted two sets of simulations that compared the effect of countermeasures against soil liquefaction: grid‐form ground improvement to strengthen the earthquake resistance of existing houses and replacement of liquefiable backfill soil of river wharves for seismic reinforcement of the wharf structure. The developed method accelerates the simulation and enables us to quantitatively estimate the effect of countermeasures using the high‐fidelity 3D soil‐structure models on a small cluster of computers.  相似文献   
53.
ABSTRACT

Government efforts to industrialise and modernise the Lao economy through intensive resource development are having adverse effects on rural livelihoods as resources are degraded and access to limited land and natural resources has intensified. In one of the country's key river basins, Nam Ngum, a series of resource developments including hydropower, mining and agricultural plantations have modified the landscape over the last four decades. Uncoordinated resource developments are putting intense pressure on increasingly scarce natural resources and affecting the lives of people who are dependent on them. Economic diversification of rural households in Feuang District in the Nam Ngum River Basin has created significant discrepancies between the rich and the poor, yet all households remain primarily dependent on agriculture. Land is of enduring importance to rural livelihoods. National development intervention has failed to secure basic livelihoods for rural households.  相似文献   
54.
55.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   
56.
Recent horizontal displacements in Japan are discussed by using the results of the first-order triangulation surveys. Large horizontal displacements are found in East Hokkaido, Tohoku, South Kanto, Tokai and Nankai districts (Fig.1). Crustal activity in these districts is also briefly discussed. The original triangulation survey in Japan neglected Laplace (azimuth) observations and consequently rotation and divergence around the assumed fixed point often appear as horizontal displacements. This is especially true in the central Japan where horizontal displacements result from cancelling the apparent rotation and divergence around the assumed fixed point (Fig.2).On the other hand, strain measurements avoid such shortcoming. Considering with the results of the first triangulation, the horizontal earth-strain can be calculated for every subsequent triangulation net. It is interesting that the velocity of the maximum shear strain is almost 2–3 · 10/t7/year throughout Japan (Fig.3), even though the seismic activities show large regional discrepancies.  相似文献   
57.
Dynamic visualization of landslide cross-sections is important for understanding the structure and mechanism of landslide formation. Moreover, the modeling of geologic information plays an effective role in geo-hazard assessment and their mitigation. In this study, we developed the basic theory of a three-dimensional landslide modeling and applied it to the Nigawa landslide of the Hyogo Prefecture in central Japan. The construction of this model is based on the boundary surfaces of slump blocks and geologic units, and the hierarchical relationships between these surfaces. An application algorithm was validated and the model proved efficient in depicting the nature of landslides in the Nigawa area.  相似文献   
58.
Study of focal mechanisms of earthquakes in the Near and Komandorsky Islands indicate that there are several distinct zones of tectonic activity. South of the Near Islands, normal faulting occurs in the trench east of 172°E and low-angle thrusting dominates the Aleutian ridge. Mechanisms indicate underthrusting as far west as Mednyy Island with strike-slip faulting restricted to the south and west of Beringa Island. A zone of northeast striking left-lateral faulting near 1645.°E is proposed to separate the Aleutian Ridge from Kamchatka Peninsula. This motion, as well as faulting north of the Komandorsky Islands, may be related to the existance of a buffer plate comprising the Aleutian Ridge in the Komandorsky Islands. Active subduction terminates near 173°E and the faulting north of the Komandorsky Islands may, in part, be due to the bouyancy of a remnant slab. Depth phase modelling indicates bulletin-reported depths are overestimated due to a misidentification of depth phases.  相似文献   
59.
Based on seismicity and focal mechanisms, a separate Okhotsk plate is identified which includes most of the Sea of Okhotsk, Kamchatka Peninsula, and the Suntar-Khayata Mountains, in the northeastern USSR. Using slip vectors from the largest earthquakes in the region, we obtain a North America-Eurasia pole of rotation near the Lena River delta and a Okhotsk-North America pole off western Chukotka. The computed poles satisfy observed thrust faulting mechanisms in the northern Cherskii Mountains which are discordant with models proposed by previous workers. It is suggested that the Arctic rift propagated through northeast Siberia to the Pacific, separating the Okhotsk plate and causing a recent (<3Ma) change in location of the North America-Eurasia pole of rotation.  相似文献   
60.
Kaoru  Sugihara  Naoto  Masunaga  Kazuhiko  Fujita 《Island Arc》2006,15(4):437-454
Abstract The taxonomic diversity of hermatypic corals decreases with increasing latitude, which correlates with sea‐surface temperatures. However, little is known about latitudinal changes in the taxonomic diversity and biogeographic patterns of larger benthic foraminifera, although their physiological requirements are similar to those of hermatypic corals because of their symbiotic relationships with microalgae. The present study examined how the abundance and taxonomic composition of larger foraminiferal assemblages in shallow‐water reef sediments change with latitude along the Ryukyu Islands (Ryukyus), which are located near the northern limit of coral‐reef distributions in the western Pacific Ocean. Three islands from different latitudes in the Ryukyus were selected to investigate latitudinal changes in larger foraminiferal assemblages: Ishigaki Island (24°20′N, 124°10′E), Kudaka Island (26°09′N, 127°54′E) and Tane‐ga‐shima Island (30°20′N, 131°E). Four sediment samples were taken at each of three topographic sites (beach, shallow lagoon and reef crest) on the reef flat of each island. Foraminiferal tests of a 2.0‐ to 0.5‐mm size fraction were selected, identified and counted. The variations in foraminiferal abundance in reef sediments from three latitudinally different islands exhibit two contrasting trends along reef flats: a shoreward decrease on Ishigaki and Tane‐ga‐shima Islands and a shoreward increase on Kudaka Island. A total of 25, 24 and 13 foraminiferal taxa were identified in Ishigaki, Kudaka and Tane‐ga‐shima Islands, respectively. Baculogypsina sphaerulata, Neorotalia calcar and Amphistegina spp. were dominant (i.e. >3% of foraminiferal assemblages) in the three islands. Calcarina gaudichaudii and Calcarina hispida were common on Ishigaki and Kudaka Islands but were absent on Tane‐ga‐shima Island. Larger foraminiferal assemblages from three different reef‐flat environments on Ishigaki Island can be distinguished, whereas those from the three environments on Kudaka and Tane‐ga‐shima Islands are similar in composition. These latitudinal changes in larger foraminiferal assemblages in reef sediments may possibly be caused by variations in the topography of reef flats, distributions and standing crops of living foraminifers on reef flats, and the northern limit of some calcarinid species in the northern Ryukyus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号