首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
测绘学   4篇
大气科学   10篇
地球物理   41篇
地质学   55篇
海洋学   53篇
天文学   38篇
综合类   1篇
自然地理   11篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   15篇
  2007年   12篇
  2006年   7篇
  2005年   15篇
  2004年   12篇
  2003年   10篇
  2002年   5篇
  2001年   3篇
  2000年   7篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1966年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
171.
Porosity is one of the most important physical properties in the rheology of small icy satellites composed of ice–silicate mixtures. Deformation experiments involving ice and 1 μm silica bead mixtures were conducted to clarify the effect of porosity on the flow law of ice–silica mixtures. Mixtures with silica mass contents of 0, 30, and 50 wt.% were used for the experiments, and the porosity was changed from 0% to 25% in each mixture. The temperature ranged from −10 to −20 °C, and the strain rate was changed from 1.2 × 10−6 to 4.2 × 10−4 s−1. As a result, it was found that the ice–silica mixtures deformed plastically, and that the relationship between the maximum stress, σmax, on the stress–strain curve and the applied strain rate, , could be described by the following flow law: . The mixture became softer as the porosity or silica mass content increased, and the stress exponent n and activation energy Q were independent of porosity, depending only on the silica mass content. Furthermore, the parameter A0 could be written as A0 = B(1 − ?)α, where ? is the porosity. The constants B and α also depended only on the silica mass content, and they increased with the increase in this content. The Maxwell relaxation time was calculated in order to estimate the conditions for topographic relaxation of icy satellites, and it was found that topographic relaxation occurred at temperatures higher than 160 K in the case of icy satellites with mean radii of 200 km.  相似文献   
172.
Abstract— In order to study the catastrophic disruption of porous bodies such as asteroids and planetesimals, we conducted several impact experiments using porous gypsum spheres (porosity: 50%). We investigated the fragment mass and velocity of disrupted gypsum spheres over a wide range of specific energies from 3 times 103 J/kg to 5 times 104 J/kg. We compared the largest fragment mass (m1/Mt) and the antipodal velocity (Va) of gypsum with those of non‐porous materials such as basalt and ice. The results showed that the impact strength of gypsum was notably higher than that of the non‐porous bodies; however, the fragment velocity of gypsum was slower than that of the non‐porous bodies. This was because the micro‐pores dispersed in the gypsum spheres caused a rapid attenuation of shock pressure in them. From these results, we expect that the collisional disruption of porous bodies could be significantly different from that of non‐porous bodies.  相似文献   
173.
The drying-induced deformation behaviour of Opalinus Clay and tuff, which are being investigated under international and local collaborative projects for nuclear waste disposal in Switzerland and Japan, was investigated under a no-stress condition in the laboratory to evaluate their generic susceptibility to the formation of excavation damaged zone. The cylindrical core samples of Opalinus Clay and tuff were prepared to a one-dimensional drying condition and submitted to an uncontrolled laboratory environment. The strain evolution, evaporative water loss and environmental entities, such as temperature and relative humidity, were recorded simultaneously and quasi-continuously. It was observed that the drying phase induced significant strain magnitude and damage in Opalinus Clay samples, which was evidenced by the formation of hairy cracks on the surface parallel to the bedding. On the contrary, the strain occurrences in tuff samples were relatively insignificant, and no tendency of cracking was observed. In addition, the quasi-continuous availability of volumetric strains was further used in poroelastic relation for the estimation of capillary suction evolution. The calculated results were validated with pore size distributions obtained from mercury intrusion porosimetry.  相似文献   
174.
175.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   
176.
177.
Masahiko  Yagi 《Island Arc》1993,2(4):240-261
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb.  相似文献   
178.
Several models simulate watershed areas by delineating hillslopes. Hillslope size depends on the length of stream tributaries, which are affected by the drainage area threshold (DAT). There is no universal approach to identify the appropriate DAT. Therefore, a method to derive the DAT and a series of steps to delineate a watershed into smaller sizes were proposed in this study, and the impact of hillslope size on slope gradient estimation was investigated. The DAT obtained in this study was smaller than that obtained using other methods, resulting in a shorter length of the tributaries. Dividing these tributaries into equal short segments and using them to delineate the study area reduced the size of the hillslope. The results revealed that the shorter the length of the tributaries, the smaller the hillslope size. The accuracy of gradient estimation increased when the size of the hillslope was reduced.  相似文献   
179.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
180.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号