首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   20篇
  国内免费   3篇
测绘学   4篇
大气科学   37篇
地球物理   98篇
地质学   100篇
海洋学   68篇
天文学   70篇
综合类   2篇
自然地理   5篇
  2022年   4篇
  2021年   5篇
  2020年   10篇
  2019年   12篇
  2018年   12篇
  2017年   16篇
  2016年   7篇
  2015年   5篇
  2014年   18篇
  2013年   20篇
  2012年   10篇
  2011年   10篇
  2010年   22篇
  2009年   13篇
  2008年   22篇
  2007年   12篇
  2006年   13篇
  2005年   14篇
  2004年   21篇
  2003年   22篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   8篇
  1998年   8篇
  1995年   6篇
  1994年   6篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   8篇
  1972年   1篇
  1971年   2篇
排序方式: 共有384条查询结果,搜索用时 31 毫秒
41.
In this paper, the physico-chemical effects of the nebula gas on the planets are reviewed from a standpoint of planetary formation in the solar nebula.The proto-Earth growing in the nebula was surrounded by a primordial atmosphere with a solar chemical composition and solar isotopic composition. When the mass of the proto-Earth was greater than 0.3 times the present Earth mass, the surface was molten because of the blanketing effect of the atmosphere. Therefore, the primordial rare gasses contained in the primordial atmosphere dissolved into the molten Earth material without fractionation and in particular the dissolved neon is expected to be conserved in the present Earth material. Hence, if dissolved neon with a solar isotopic ratio is discovered in the Earth material, it will indicate that the Earth was formed in the nebula and that the dissolved rare gases were one of the sources which degassed to form the present atmosphere.  相似文献   
42.
Three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and proto-Jupiter, is numerically calculated by using a three-dimensional hydrodynamic code - i.e., the socalled smoothed-particle method. The flow is circulating around the Sun as well as falling into a potential well of proto-Jupiter. The results for various masses of proto-Jupiter show that (1) the e-folding growth time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the mass of proto-Jupiter is 0.2 ~ 0.5 times the present Jovian mass, and that (2) proto-Jupiter begins to push away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the present Jovian mass.  相似文献   
43.
Response of an unbounded two-layer ocean to traveling atmospheric disturbances is analytically investigated. Under the assumption that (1) lower layer is motionless, (2) each layer is homogeneous and in hydrostatic balance, (3) the Coriolis parameter is constant, and (4) the density difference between the two layers is small compared to the density itself, the one-dimensional Klein-Gordon's equation is solved analytically for both the divergent and rotational wind stress. Numerical examples of the wake pattern of the upwelling behind the regional divergent and rotational wind fields are also represented.The results may be summarized as follows: (1) the effect of the divergent wind stress is dominant when the forced Rossby numberR 0 (the ratio of the frequency of the wind stress to the Coriolis parameter) is larger than unity unless the Mach numberM (the ratio of the traveling velocity of the wind stress to the internal gravitational velocity) is far less than unity, (2) the effect of the rotational wind stress is important, when the forced Rossby numberR 0 is less than unity.  相似文献   
44.
To investigate whether the biological toxicity of aquatic hypercapnia is due to the direct effects of CO2 or to the effects of acidification of seawater by CO2, the Japanese flounder (Paralichthys olivaceus) was subjected to seawater equilibrated with a gas mixture of air containing 5% CO2 (pH 6.18) or seawater acidified to the same pH with 1 N H2SO4. All the fish died within 72 h in the CO2 exposure group, whereas no mortality occurred in the acid group. Acid-base parameters as well as plasma ion concentrations were severely perturbed in the CO2 exposure group, whereas they were minimally affected in the acid group. These results clearly demonstrate that the mortality in the CO2 group is a direct result of the elevated levels of dissolved CO2 and not to the effects of the reduced water pH.  相似文献   
45.
In this study, we constructed a perturbed physics ensemble (PPE) for the MIROC5 coupled atmosphere–ocean general circulation model (CGCM) to investigate the parametric uncertainty of climate sensitivity (CS). Previous studies of PPEs have mainly used the atmosphere-slab ocean models. A few PPE studies using a CGCM applied flux corrections, because perturbations in parameters can lead to large radiation imbalances at the top of the atmosphere and climate drifts. We developed a method to prevent climate drifts in PPE experiments using the MIROC5 CGCM without flux corrections. We simultaneously swept 10 parameters in atmosphere and surface schemes. The range of CS (estimated from our 35 ensemble members) was not wide (2.2–3.2?°C). The shortwave cloud feedback related to changes in middle-level cloud albedo dominated the variations in the total feedback. We found three performance metrics for the present climate simulations of middle-level cloud albedo, precipitation, and ENSO amplitude that systematically relate to the variations in shortwave cloud feedback in this PPE.  相似文献   
46.
Japanese Venus Climate Orbiter, Akatsuki, is cruising to approach to Venus again although its first Venus orbital insertion (VOI) has been failed. At present, we focus on the next opportunity of VOI and the following scientific observations.We have constructed an automated cloud tracking system for processing data obtained by Akatsuki in the present study. In this system, correction of the pointing of the satellite is essentially important for improving accuracy of the cloud motion vectors derived using the cloud tracking. Attitude errors of the satellite are reduced by fitting an ellipse to limb of an imaged Venus disk. Next, longitude–latitude distributions of brightness (cloud patterns) are calculated to make it easy to derive the cloud motion vectors. The grid points are distributed at regular intervals in the longitude–latitude coordinate. After applying the solar zenith correction and a highpass filter to the derived longitude–latitude distributions of brightness, the cloud features are tracked using pairs of images. As a result, we obtain cloud motion vectors on longitude–latitude grid points equally spaced. These entire processes are pipelined and automated, and are applied to all data obtained by combinations of cameras and filters onboard Akatsuki. It is shown by several tests that the cloud motion vectors are determined with a sufficient accuracy. We expect that longitude–latitude data sets created by the automated cloud tracking system will contribute to the Venus meteorology.  相似文献   
47.
We have searched for very high energy (VHE) gamma rays from four blazars using the CANGAROO-III imaging atmospheric Cherenkov telescope. We report the results of the observations of H 2356-309, PKS 2155-304, PKS 0537-441, and 3C 279, performed from 2005 to 2009, applying a new analysis to suppress the effects of the position dependence of Cherenkov images in the field of view. No significant VHE gamma ray emission was detected from any of the four blazars. The GeV gamma-ray spectra of these objects were obtained by analyzing Fermi/LAT archival data. Wide range (radio to VHE gamma-ray bands) spectral energy distributions (SEDs) including CANGAROO-III upper limits, GeV gamma-ray spectra, and archival data, even though they are non-simultaneous, are discussed using a one-zone synchrotron self-Compton (SSC) model in combination with a external Compton (EC) radiation. The HBLs (H 2356-309 and PKS 2155-304) can be explained by a simple SSC model, and PKS 0537-441 and 3C 279 are well modeled by a combination of SSC and EC model. We find a consistency with the blazar sequence in terms of strength of magnetic field and component size.  相似文献   
48.
We compare line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The line-of-sight magnetic signal inferred from the calibrated MDI data is greater than that derived from the HMI data by a factor of 1.40. This factor varies somewhat with center-to-limb distance. An upper bound to the random noise for the 1′′ resolution HMI 720-second magnetograms is 6.3 Mx?cm?2, and 10.2 Mx?cm?2 for the 45-second magnetograms. Virtually no p-mode leakage is seen in the HMI magnetograms, but it is significant in the MDI magnetograms. 12-hour and 24-hour periodicities are detected in strong fields in the HMI magnetograms. The newly calibrated MDI full-disk magnetograms have been corrected for the zero-point offset and underestimation of the flux density. The noise is 26.4 Mx?cm?2 for the MDI one-minute full-disk magnetograms and 16.2 Mx?cm?2 for the five-minute full-disk magnetograms observed with four-arcsecond resolution. The variation of the noise over the Sun’s disk found in MDI magnetograms is likely due to the different optical distortions in the left- and right-circular analyzers, which allows the granulation and p-mode to leak in as noise. Saturation sometimes seen in sunspot umbrae in MDI magnetograms is caused by the low intensity and the limitation of the onboard computation. The noise in the HMI and MDI line-of-sight magnetic-field synoptic charts appears to be fairly uniform over the entire map. The noise is 2.3 Mx?cm?2 for HMI charts and 5.0 Mx?cm?2 for MDI charts. No evident periodicity is found in the HMI synoptic charts.  相似文献   
49.
The origin of the Earth's ocean has been discussed on the basis of deuterium/hydrogen ratios (D/H) of several sources of water in the Solar System. The average D/H of carbonaceous chondrites (CC's) is known to be close to the current D/H of the Earth's ocean, while those of comets and the solar nebula are larger by about a factor of two and smaller by about a factor of seven, respectively, than that of the Earth's ocean. Thus, the main source of the Earth's ocean has been thought to be CC's or adequate mixing of comets and the solar nebula. However, those conclusions are correct only if D/H of water on the Earth has remained unchanged for the past 4.5 Gyr. In this paper, we investigate evolution of D/H in the ocean in the case that the early Earth had a hydrogen-rich atmosphere, the existence of which is predicted by recent theories of planet formation no matter whether the nebula remains or not. Then we show that D/H in the ocean increases by a factor of 2-9, which is caused by the mass fractionation during atmospheric hydrogen loss, followed by deuterium exchange between hydrogen gas and water vapor during ocean formation. This result suggests that the apparent similarity in D/H of water between CC's and the current Earth's ocean does not necessarily support the CC's origin of water and that the apparent discrepancy in D/H is not a good reason for excluding the nebular origin of water.  相似文献   
50.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号