首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
  国内免费   2篇
测绘学   7篇
大气科学   6篇
地球物理   43篇
地质学   53篇
海洋学   3篇
天文学   1篇
综合类   2篇
自然地理   14篇
  2024年   2篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   8篇
  2018年   14篇
  2017年   7篇
  2016年   12篇
  2015年   15篇
  2014年   7篇
  2013年   12篇
  2012年   4篇
  2011年   13篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
121.
The entire land of Southern Iran faces problems arising out of various types of land degradation of which vegetation degradation forms one of the major types. The Qareh Aghaj basin (1 265 000 ha), which covers the upper reaches of Mond River, has been chosen for a test risk assessment of this type. The different kinds of data for indicators of vegetation degradation were gathered from the records and published reports of the governmental offices of Iran. A new model has been developed for assessing the risk of vegetation degradation. Taking into consideration nine indicators of vegetation degradation the model identifies areas with “Potential Risk” (risky zones) and areas of “Actual Risk” as well as projects the probability of the worse degradation in future. The preparation of risk maps based on the GIS analysis of these indicators will be helpful for prioritizing the areas to initiate remedial measures. By fixing the thresholds of severity classes of the nine indicators a hazard map for each indicator was first prepared in GIS. The risk classes were defined on the basis of risk scores arrived at by assigning the appropriate attributes to the indicators and the risk map was prepared by overlaying nine hazard maps in the GIS. Areas under actual risk have been found to be widespread (78%) in the basin and when the risk map classified into subclasses of potential risk with different probability levels the model projects a statistical picture of the risk of vegetation degradation.  相似文献   
122.
Iran enjoys a variety of climatological conditions. Moreover, numerical weather prediction (NWP) models are not assimilated with the meteorological data in Iran, the country suffering from poor spatial and temporal resolution of radiosonde measurements. These facts make modeling of troposphere impossible using the measurements and NWP. On the other hand, the global positioning system (GPS) has been emerged as a valuable tool for modeling and remote sensing of Earth’s atmosphere. This research is the first attempt to address the tropospheric wet refractivity modeling by GPS measurements in Iran. Changes of topography in the study area are taken into account. As a leading work, virtual reference stations (VRS) are used to fix the rank deficiency of the problem. The model space resolution matrix is used to achieve the optimum spatial resolution of the tomographic model and the optimum number of VRS stations. The accuracy of the developed model (KNTU1) is investigated by deploying radiosonde measurements.  相似文献   
123.
In the blasting operation, risk of facing with undesirable environmental phenomena such as ground vibration, air blast, and flyrock is very high. Blasting pattern should properly be designed to achieve better fragmentation to guarantee the successfulness of the process. A good fragmentation means that the explosive energy has been applied in a right direction. However, many studies indicate that only 20–30 % of the available energy is actually utilized for rock fragmentation. Involvement of various effective parameters has made the problem complicated, advocating application of new approaches such as artificial intelligence-based techniques. In this paper, artificial neural network (ANN) method is used to predict rock fragmentation in the blasting operation of the Sungun copper mine, Iran. The predictive model is developed using eight and three input and output parameters, respectively. Trying various types of the networks, it was found that a trained model with back-propagation algorithm having architecture 8-15-8-3 is the optimum network. Also, performance comparison of the ANN modeling with that of the statistical method was confirmed robustness of the neural networks to predict rock fragmentation in the blasting operation. Finally, sensitivity analysis showed that the most influential parameters on fragmentation are powder factor, burden, and bench height.  相似文献   
124.
This research focused on the determination of land cover thresholds that have a significant impact on runoff generation and soil loss at the pedon scale. For this purpose, six erosion micro-plots were set up on grassland and shrubland types of rangeland in the northeast of Iran, and the amounts of vegetation cover, litter, runoff and soil loss on them were measured. A factorial statistical analysis was carried out on the completely randomized design using land cover and rainfall factors. The results show that the effect of rainfall on soil loss and runoff was greater than that of land cover. Also, the effect of land cover on soil loss was greater than that on runoff generation. Furthermore, two specific thresholds were identified: the first was from 10 to 30% of landcover and the second from 50 to 70%.  相似文献   
125.
Natural Resources Research - Offshore oil and gas reservoirs comprise a significant portion of the world’s reserve base, and their development is expected to help close a potential gap in the...  相似文献   
126.
Natural Resources Research - It is of a high importance to introduce intelligent systems for estimation and optimization of blasting-induced ground vibration because it is one the most unwanted...  相似文献   
127.
Natural Resources Research - Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater resources using only geophysical methods is costlier in consolidated rocks such as...  相似文献   
128.
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.  相似文献   
129.
Permafrost-induced deformation of ground features is threating infrastructure in northern communities. An understanding of permafrost distribution is therefore critical for sustainable adaptation planning and infrastructure maintenance. Considering the large area underlain by permafrost in the Yukon Territory, there is a need for baseline information to characterize the permafrost in this region. In this study, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique was used to identify areas of ground movement likely caused by changes in permafrost. The DInSAR technique was applied to a series of repeat-pass C-band RADARSAT-2 observations collected in 2015 over the Village of Mayo, in central Yukon Territory, Canada. The conventional DInSAR technique demonstrated that ground deformation could be detected in this area, but the resulting deformation maps contained errors due to a loss of coherence from changes in vegetation and atmospheric phase delay. To address these limitations, the Small BAseline Subset (SBAS) InSAR technique was applied to reduce phase error, thus improving the deformation maps. To understand the relationship between the deformation maps and land cover types, an object-based Random Forest classification was developed to classify the study area into different land cover types. Integration of the InSAR results and the classification map revealed that the built-up class (e.g., airport) was affected by subsidence on the order of ?2 to ?4 cm. The spatial extent of the surface displacement map obtained using the SBAS InSAR technique was then correlated with the surficial geology map. This revealed that much of the main infrastructure in the Village of Mayo is underlain by interbedded glaciofluvial and glaciolacustrine sediments, the latter of which caused the most damage to human made structures. This study provides a method for permafrost monitoring that builds upon the synergistic use of the SBAS InSAR technique, object-based image analysis, and surficial geology data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号