首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   3篇
测绘学   1篇
大气科学   2篇
地球物理   22篇
地质学   30篇
海洋学   15篇
天文学   16篇
综合类   1篇
自然地理   5篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   7篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有92条查询结果,搜索用时 46 毫秒
21.
Eiichi Tajika  Takafumi Matsui 《Lithos》1993,30(3-4):267-280
The recent theoretical studies on the formation and evolution of the atmosphere and oceans of the Earth are reviewed. Impact degassing during accretion of the Earth would probably generate an impact-induced steam atmosphere on the proto-Earth. At the end of accretion, the steam atmosphere became unstable and condensed to form the proto-ocean with almost the present mass of ocean. The steam atmosphere would have thus evolved to the proto-CO2 atmosphere during the earliest history of the Earth because CO in the proto-atmosphere may be photochemically converted to CO2. However, CO2 in the proto-atmosphere has decreased with time through the global carbon cycle which may have stabilized the terrestrial environment against an increase in the solar luminosity. The continental growth during Hadean and Archean would therefore have a significant influence on the carbon cycle and the surface temperature. It is also suggested that the continental growth is a necessary condition for the terrestrial environment to evolve to the present state. Both the impact degassing and the subsequent continuous degassing are suggested to have played a major role in the formation and evolution of the atmosphere and ocean. In particular, most of N2 may have been produced by the impact degassing during accretion, and the contribution of the subsequent continuous degassing is at most 10% for N2. As a consequence, after the CO2 level decreased to less than 1 bar, the atmosphere may have been at about 1 bar and composed mainly of N2 for most of the subsequent history of the Earth.  相似文献   
22.
High-pressure phase transformations were investigated for two silicates, MgSiO3 and ZnSiO3; six germanates, MGeO3 and six titanates, MTiO3 (M=Ni, Mg, Co, Zn, Fe, and Mn) at about 1,000°C and pressures up to ca. 30 GPa. CoGeO3 was found to assume the ilmenite form. The ilmenite phases were confirmed to transform in the following schemes: to perovskite in MgSiO3 and MnGeO3, to corundum in MgGeO3 and ZnGeO3, to rocksalt plus rutile in ZnSiO3 and CoGeO3 and to rocksalt plus TiO2 (possibly of some denser structure) in NiTiO3, MgTiO3, CoTiO3, ZnTiO3 and FeTiO3. In the case of FeTiO3, the corundum form appeared as an intermediate phase. The possibility that the corundum type MnTiO3 might transform to some denser modification could not be excluded. The compound NiGeO3 was nonexistent throughout the pressure range studied. High-pressure phases of ABO3 (A=Ni, Mg, Co, Zn, Fe, and Mn; B=Si, Ge and Ti) are summarized, and those stabilized at pressures higher than 20 GPa are discussed.  相似文献   
23.
Magnesium orthosilicate with spinel structure (γ-Mg2SiO4) was synthesized at about 250 kbar and 1000°C. Unit cell dimension was established to be 8.076 ± 0.001Å. X-ray powder diffraction pattern revealed a significant difference between γ-Mg2SiO4 and other γ-M2SiO4 spinels (M = Fe, Co, and Ni) in the intensities of (111) and (331) reflections, both of which are virtually absent in the Mg2SiO4 spinel. This feature could be thoroughly understood by the calculation of the intensities for several silicate spinels.  相似文献   
24.
A fluidized landslide on a natural slope by artificial rainfall   总被引:9,自引:5,他引:4  
An experiment to induce a fluidized landslide by artificial rainfall was conducted on a natural slope at Mt. Kaba-san in the village of Yamato, Ibaraki Prefecture, Japan. The experimental slope was 30 m long, 5 m wide, and the average slope gradient was 33°. A landslide initiated 24,627.5 s (410 m/27.5 s) after the start of sprinkling at a rainfall intensity of 78 mm/h. The landslide mass was 14 m long and 1.2 m deep (at maximum). It first slid, then fluidized, and changed into a debris flow. The travel distance was up to 50 m in 17s. The apparent friction angle of the fluidized landslide was 16.7°. Formation of the sliding surface was detected by soil-strain probes. Motion of the surface of the failed landslide mass was determined by stereo photogrammetry.  相似文献   
25.
A two-body interatomic potential model for GeO2 polymorphs has been determined to simulate the structure change of them by semi-empirical procedure, total lattice energy minimization of GeO2 polymorphs. Based on this potential, two polymorphs of GeO2; α-quartz-type and rutile-type, have been reproduced using the molecular dynamics (MD) simulation techniques. Crystal structures, bulk moduli, volume thermal expansion coefficients and enthalpies of these polymorphs of GeO2 were simulated. In spite of the simple form of the potential, these simulated structural values, bulk moduli and thermal expansivities are in excellent agreement with the reliable experimental data in respect to both polymorphs. Using this potential, MD simulation was further used to study the structural changes of GeO2 under high pressure. We have investigated the pressure-induced amorphization. As reported in previous experimental studies, quartz-type GeO2 undergoes pressure-induced crystalline-to-amorphous transformation at room temperature, the same as other quartz compounds; SiO2, AlPO4. Under hydrostatic compression, in this study, α-quartz-type GeO2 transformed to a denser amorphous state at 7.4 GPa with change of the packing of oxygen ions and increase of germanium coordination. At higher pressure still, rutile-type GeO2 transformed to a new phase of CaCl2-type structure as a post-rutile candidate. Received: 29 July 1996 / Revised, accepted: 30 April 1997  相似文献   
26.
The structural and elastic properties of the ilmenite and perovskite phases of MgSiO3 are investigated with a computational model based on energy minimization. The potential energies of these two crystals are approximated by the sum of Coulomb, van der Waals, and repulsion terms between atoms. Required energy parameters are derived by fitting the parameters to the observed crystal structures of these two phases as well as to the measured elastic constants of the ilmenite phase. The resulting potential model is applied to predicting the elastic constants of the perovskite phase. The calculated bulk modulus of the perovskite phase compares favorably with the data obtained from volume-compression experiments as well as the values estimated from empirical elasticity systematics of perovskite type compounds. The predicted shear modulus of the perovskite phase is also in reasonable agreement with the values proposed from similar empirical elasticity systematics. Subsequently, the model is used to simulate the high pressure behaviors of the crystal structures and elastic constants of these two phases.  相似文献   
27.
Using a Fizeau interferometry technique, we have measured the coefficients of linear thermal expansion of single-crystal forsterite (Mg2SiO4) along three axial directions to 1023 K during heating and cooling cycles. Overall, the present data are consistent in magnitude (within 1 to 2%) with those previously reported but have less scatter. We used the Grüneisen statistical mechanical approach in analzying the data. The least-squares method was applied to evaluate thermal parameters (?, Q 0, k and a) in two cases. The expansion coefficients in wider temperature ranges were extrapolated by using the parameters of solution 2 (i.e., solution by fixing ? and k). In contrast to earlier findings, our results show that for forsterite the Grüneisen parameter decreases with temperature, implying that it does not behave too differently from fayalite (Fe2SiO4) and periclase (MgO).  相似文献   
28.
29.
Matsui  R.  Kido  M.  Niwa  Y.  Honsho  C. 《Marine Geophysical Researches》2019,40(4):541-555

Traditional Global Navigation Satellite System-Acoustic (GNSS-A) positioning assumes the Layered Model in the sound speed structure, and any of horizontal perturbation of seawater degrades its accuracy. However, the use of the Gradient Model analytically demonstrated that the horizontal gradient of the sound speed structure and displacement can simultaneously be solved using multiple transponders for each of ping. We applied this technique to our observed data and found it unsuitable for real data. We confirmed that a horizontal perturbation with wavelength shorter than the horizontal extent of the transponder array significantly violates the linear approximation in the Gradient Model. Our vertical 2D numerical simulation of internal waves (IWs) forced by tidal oscillation showed that such small-scale IWs could effectively be generated by nonlinear cascade from large-scale IWs of the major tidal constituents. In addition, a small-scale IW in deep water typically has a period of 3–4 h, which degrades positioning accuracy significantly, whereas an IW of much shorter period in shallow water has less effect after removal of the fluctuation by time averaging within a typical observation period. Apparent array position obtained in the synthetic test based on the simulated IW-derived sound speed structure showed features quite similar to that observed in real surveys. To incorporate such deeper perturbation, we proposed a Disturbance Model using dual sea surface platforms, that can solve time-varying perturbation in the vicinity of each transponder.

  相似文献   
30.
We investigated the lattice vibrational properties and lattice dynamical behaviour of diopside by combining laser micro-Raman spectroscopic measurements with quasi-harmonic lattice dynamic simulation using a transferable interatomic potential. We obtained polarized Raman spectra from a Fe-poor natural diopside and the temperature dependencies of the Raman modes to 1125?K from high-temperature Raman spectra of a Fe-poor and a Fe-rich natural diopside. The various modes display different temperature dependencies: from ?0.021?cm?1/K to ?0.004?cm?1/K. The temperature shift of low frequency modes is generally higher. A comparison of experimentally determined frequencies and symmetries of vibrational modes of the optical type (Raman and infrared) obtained in this and earlier studies with those calculated by us suggests that a consistent characterization of the vibrational properties was achieved. The good agreement between the experimental and simulated data on the temperature-dpendencies of the Raman modes (within 5%), crystal structure (2%), bulk modulus (5%), volume thermal expansivity (6%), and constant volume heat capacity (0.2%) testifies to the applicability of the transferable interatomic potential and the lattice dynamic model to predicting the vibrational, physical, and thermodynamic properties. The simulated properties from the lattice dynamic calculations are very similar to those obtained by molecular dynamic calculations with the same potential model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号