首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   18篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   52篇
地质学   75篇
海洋学   8篇
天文学   57篇
综合类   2篇
自然地理   7篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   8篇
  2018年   12篇
  2017年   17篇
  2016年   12篇
  2015年   12篇
  2014年   12篇
  2013年   6篇
  2012年   21篇
  2011年   20篇
  2010年   14篇
  2009年   9篇
  2008年   11篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
131.
Using GB-SAR technique to monitor slow moving landslide   总被引:3,自引:0,他引:3  
A Ground-Based SAR (GB-SAR) interferometer was employed to measure the surface displacements of a landslide occurring in the Carnian Alps, north-eastern Italy, which has affected a national road and seriously damaged a road tunnel still under construction. Moreover, since the landslide is located on the left bank of the Tagliamento River Valley, it is feared that this mass movement might dam the river, creating a basin that would increase natural hazard for the valley inhabitants. The data collected from December 2002 to July 2005 by a conventional monitoring system, consisting of a GPS network and boreholes equipped with inclinometric tubes, showed that the landslide was moving at a quasi-constant rate of about 3 cm per year. Due to the slow deformation rate of the landslide, a recently developed GB-SAR technique based on the analysis of a restricted ensemble of coherent points was used. Two surveys, each lasting two days, were planned in December 2004 and July 2005, in order to map and measure the surface displacements that occurred over time. The results from the radar were compared with the ones derived from the GPS monitoring network. An agreement was achieved among the data collected, showing the capability of the GB-SAR technique to measure displacements even within a time span of several months between the surveys.  相似文献   
132.
International Journal of Earth Sciences - In the Western Alps, a steeply dipping km-scale shear zone (the Ferriere-Mollières shear zone) cross-cuts Variscan migmatites in the...  相似文献   
133.
134.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10079-6  相似文献   
135.
This paper reports on a series of shaking table tests on a full-scale flat-bottom steel silo filled with soft wheat, characterized by aspect ratio of around 0.9. The specimen was a 3.64-m diameter and 5.50-m high corrugated-wall cylindrical silo. Multiple sensors were used to monitor the static and dynamic response of the filled silo system, including accelerometers and pressure cells. Numerous unidirectional dynamic tests were performed consisting of random signals, sinusoidal inputs, and both artificial and real earthquake records. The objectives of this paper are (i) to provide a general overview of the whole experimental campaign and (ii) to present selected results obtained for the fixed-base configuration. The measured data were processed to assess the static pressures, the dynamic overpressures (related to the effective mass) and the accelerations of monitored points on the silo wall, and to identify the basic dynamic properties (fundamental frequency of vibration, damping ratio, dynamic amplification factors) of the filled silo. The main findings are discussed and compared with the predictions given by available theoretical models and code provisions. It is found that the fundamental frequency slightly decreases with increasing acceleration, while it slightly increases with increasing compaction of the granular material. For close-to-resonance input, the dynamic amplification (in terms of peak values of accelerations) increases along the height of the silo wall up to values of around 1.4 at the top surface of the solid content. The dynamic overpressures appear to increase with depth (differently from the EN1998-4 expectations), and to be proportional to the acceleration.  相似文献   
136.
The study analyses the morphological response of a gravel‐bed river to discharges of different magnitude (from moderate events that occur several times a year to a 12‐year flood) and so defines the range of formative discharges for single morphological units (channels, bars, islands) and a range of magnitude of morphological activity from the threshold discharges for gravel transport and minor bar modification up to flows causing major morphological changes. The study was conducted on the Tagliamento River, a large gravel‐bed river in north‐eastern Italy, using two different methods, analysis of aerial photographs and field observation of painted gravel particles. The available photographs (five flights from August 1997 to November 2002) and the two commissioned flights (June 2006 and April 2007) do not define periods with a single flood event, but the intervals are short enough (11 to 22 months) to have a limited number of flood events in each case. The fieldwork, which involved cross‐section survey, grain‐size analysis and observation of painted sediments, complemented the aerial surveys by allowing analysis of channel response to single flood events. Substantial morphological changes (e.g. bank erosion of several tens of metres up to more than 100 m) associated with flood events with a recurrence interval between 1·1 year and 12 years have been documented. Multiple forming discharges were defined based on the activity of different morphological units. Discharges equal to 20–50% of the bankfull discharge are formative for the channels, whereas the bankfull discharge (1·1 year flood in this case of the Tagliamento River) is formative for low bars. Larger floods, but still relatively frequent (with a recurrence interval less than five years), are required for full gravel transport on high bars and significant morphological changes of islands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
137.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   
138.
Although seismic sources typically consist of identical broadband units alone, no physical constraint dictates the use of only one kind of device. We propose an acquisition method that involves the simultaneous exploitation of multiple types of sources during seismic surveys. It is suggested to replace (or support) traditional broadband sources with several devices individually transmitting diverse and reduced frequency bands and covering together the entire temporal and spatial bandwidth of interest. Together, these devices represent a so‐called dispersed source array. As a consequence, the use of simpler sources becomes a practical proposition for seismic acquisition. In fact, the devices dedicated to the generation of the higher frequencies may be smaller and less powerful than the conventional sources, providing the acquisition system with increased operational flexibility and decreasing its environmental impact. Offshore, we can think of more manageable boats carrying air guns of different volumes or marine vibrators generating sweeps with different frequency ranges. On land, vibrator trucks of different sizes, specifically designed for the emission of particular frequency bands, are preferred. From a manufacturing point of view, such source units guarantee a more efficient acoustic energy transmission than today's complex broadband alternatives, relaxing the low‐ versus high‐frequency compromise. Furthermore, specific attention can be addressed to choose shot densities that are optimum for different devices according to their emitted bandwidth. In fact, since the sampling requirements depend on the maximum transmitted frequencies, the appropriate number of sources dedicated to the lower frequencies is relatively small, provided the signal‐to‐noise ratio requirements are met. Additionally, the method allows to rethink the way to address the ghost problem in marine seismic acquisition, permitting to tow different sources at different depths based on the devices' individual central frequencies. As a consequence, the destructive interference of the ghost notches, including the one at 0 Hz, is largely mitigated. Furthermore, blended acquisition (also known as simultaneous source acquisition) is part of the dispersed source array concept, improving the operational flexibility, cost efficiency, and signal‐to‐noise ratio. Based on theoretical considerations and numerical data examples, the advantages of this approach and its feasibility are demonstrated.  相似文献   
139.
140.
An overall acceleration of rock glacier displacement rates in the Alps has been observed in recent decades, with several cases of destabilization leading to potential geomorphological hazards. This behaviour has been attributed to the rising permafrost temperature, induced by atmospheric warming and regulated by thermo-hydrological processes. Landforms derived from the interaction of glacier remnants and permafrost are widespread in mountain areas, but are less studied and monitored than talus rock glaciers. This work presents a comparative study of a talus rock glacier and a glacial-permafrost composite landform (GPCL) in the Eastern Italian Alps. The two landforms are only 10 km apart, but have rather different elevation ranges and main slope aspects. The kinematics and ground thermal conditions were monitored from 2001 to 2015 along with geomorphological surveys, analyses of historical maps and remote sensing data. The dynamic behaviour of the rock glacier was similar to the majority of monitored rock glaciers in the Alps, with an acceleration after 2008 and a velocity peak in 2015. In contrast, the GPCL had a nearly unchanged displacement rate during the observation period. Statistical analyses of kinematic vs. nivo-meteorological variables revealed a dynamic decoupling of the two landforms after 2008 that corresponds with increased winter snow accumulation. Although the kinematics of both landforms respond to ground surface temperature variations, the collected evidence suggests a different reaction of ground surface temperature to variations in the precipitation regime. This different reaction is likely due to local topo-climatic conditions that affect snow redistribution by wind. The different reactions of the two systems to the same climatic forcing is likely a legacy of their different origins. GPCL dynamics result from interaction of permafrost and residual glacial dynamics that are associated with possible peculiarities in the internal/basal meltwater circulation, whose future response is uncertain and requires improved understanding. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号