首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   16篇
  国内免费   1篇
测绘学   4篇
大气科学   33篇
地球物理   96篇
地质学   126篇
海洋学   34篇
天文学   43篇
综合类   6篇
自然地理   26篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   16篇
  2019年   11篇
  2018年   12篇
  2017年   18篇
  2016年   22篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   15篇
  2011年   22篇
  2010年   17篇
  2009年   23篇
  2008年   15篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   12篇
  2003年   13篇
  2002年   11篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
排序方式: 共有368条查询结果,搜索用时 218 毫秒
31.
ABSTRACT

This paper addresses the Jurassic–Cretaceous stratigraphic evolution of fore-arc deposits exposed along the west coast of the northern Antarctic Peninsula. In the South Shetland Islands, Upper Jurassic deep-marine sediments are uncomformably overlain by a Lower Cretaceous volcaniclastic sequence that crops out on Livingston, Snow and Low islands. U-Pb zircon ages are presented for the upper Anchorage Formation (153.1 ± 1.7 Ma) and the Cape Wallace granodiorite of Low Island (137.1 ± 1.7 Ma) as well as 40Ar/39Ar ages of 136–139 Ma for Low Island andesites. Data are also presented for a U-Pb age of 109.0 ± 1.4 Ma for the upper volcanic succession of Snow Island. In combination with published stratigraphy, these data provide a refined chrono- and litho-stratigraphic framework for the deposits herein referred to as the Byers Basin. Tentative correlation is explored with previously described deposits on Adelaide and Alexander islands, which could suggest further continuation of the Byers Basin towards the south. We also discuss possible correlation of the Byers Basin with the Larsen Basin, a sequence that shows the evolution of foreland to back-arc deposits more or less contemporaneously with the fore-arc to intra-arc evolution of the Byers Basin.  相似文献   
32.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   
33.
As an alternative to computationally expensive N-body simulations for gravitional clustering, the Zel'dovich approximation (ZA) was studied in 3D, 2D and 1D. Plots of the density contrast were compared against linear theory and the exact solution. The ZA was found to perform very well in the linear regime, better than linear theory, and to give a good approximation well into the non-linear regime. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
34.
35.
36.
37.
38.
39.
Mapping ecologically relevant zones in the marine environment has become increasingly important. Biological data are however often scarce and alternatives are being sought in optimal classifications of abiotic variables. The concept of ‘marine landscapes’ is based on a hierarchical classification of geological, hydrographic and other physical data. This approach is however subject to many assumptions and subjective decisions.  相似文献   
40.
The southeast area of the Argentine Pampas is characterized by the presence of an unconfined aquifer in a wide plain. A methodology is proposed that deals with the aquifer vulnerability where the homogeneity of the hydrogeological variables used by traditional methods (in this case, DRASTIC-P) causes vulnerability maps to show more than 80% of the territory under the same class. This absence of discrimination renders vulnerability maps of little use to decision-makers. In addition, the proposed methodology avoids the traditional vague classification (high, low, and moderate vulnerability) which is highly dependent on subjectivity in its association of each class with hydrogeological considerations. That traditional vulnerability assessment methodology was adapted using a geographic information system to reclassify classes, based on the Natural Breaks (Jenks) method. The pixel-to-pixel comparison between the result obtained by the DRASTIC-P and the reclassified classes generates the so-called operational vulnerability index (OVI), which shows four classes, associating each with different hydrogeological requirements to make decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号