首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   11篇
  国内免费   2篇
测绘学   11篇
大气科学   19篇
地球物理   100篇
地质学   148篇
海洋学   27篇
天文学   81篇
自然地理   48篇
  2021年   6篇
  2020年   11篇
  2019年   6篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   25篇
  2012年   14篇
  2011年   9篇
  2010年   14篇
  2009年   19篇
  2008年   15篇
  2007年   12篇
  2006年   15篇
  2005年   10篇
  2004年   11篇
  2003年   12篇
  2002年   17篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1984年   5篇
  1983年   7篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1973年   5篇
  1970年   4篇
  1962年   4篇
  1961年   3篇
  1960年   6篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1952年   3篇
  1940年   3篇
  1937年   4篇
  1936年   3篇
排序方式: 共有434条查询结果,搜索用时 171 毫秒
411.
    
Max Linke 《GeoJournal》1992,26(2):222
  相似文献   
412.
413.
In structural geology, viscous creep is generally recognized as the major deformation mechanism in the folding of rock layers through geological time scales of hundreds of thousands of years. Moreover, since deformation of rock salt by creep takes already place on relatively small time scales—weeks to months, say—creep is a relevant phenomenon when studying salt mining, notably the convergence of mine cavities and the land subsidence caused by it. While creep is the dominant process on relatively long time scales, elasticity plays a dominant role in processes that take place on relatively short time scales. The elastic response to a stress is a displacement; the shape of the rock is deformed instantaneously with respect to its initial shape. However, the viscous response of a rock to a stress is a relatively low velocity in the order of millimeters per months or years, say. In this paper we consider the two deformation phenomena creep and elasticity. In general, elasticity is a compressible phenomenon, while creep is incompressible. Here we approximate creep by the introduction of a negligibly small amount of compressibility, which makes creep velocity calculations similar to conventional elastic displacement calculations. Using this procedure, a standard finite element package for elasticity can be applied to viscous problems, also in combination with elasticity. The method has been demonstrated to upscaling of creep viscosities.  相似文献   
414.
415.
High-resolution seismic profiles, swath bathymetry, side-scan sonar data and video imageries are analysed in this detailed study of five carbonate mounds from the Belgica mound province with special emphasis on the well-surveyed Thérèse Mound. The selected mounds are located in the deepest part of the Belgica mound province at water depths of 950 m. Seismic data illustrate that the underlying geology is characterised by drift sedimentation in a general northerly flowing current regime. Sigmoidal sediment bodies create local slope breaks on the most recent local erosional surface, which act as the mound base. No preferential mound substratum is observed, neither is there any indication for deep geological controls on coral bank development. Seismic evidence suggests that the start-up of the coral bank development was shortly after a major erosional event of Late Pliocene–Quaternary age. The coral bank geometry has been clearly affected by the local topography of this erosional base and the prevailing current regime. The summits of the coral banks are relatively flat and the flanks are steepest on their upper slopes. Deposition of the encased drift sequence has been influenced by the coral bank topography. Sediment waves are formed besides the coral banks and are the most pronounced bedforms. These seabed structures are probably induced by bottom current up to 1 m/s. Large sediment waves are colonised by living corals and might represent the initial phase of coral bank development. The biological facies distribution of the coral banks illustrate a living coral cap on the summit and upper slope and a decline of living coral populations toward the lower flanks. The data suggest that the development of the coral banks in this area is clearly an interaction between biological growth processes and drift deposition both influenced by the local topography and current regime.  相似文献   
416.
The archaeological site of Sagalassos (SW Turkey) is located in a region characterized by the absence of any significant recent seismic activity, contrary to adjacent regions. However, the assessment of earthquake-related damage at the site suggests that the earthquakes that have been demonstrated to have struck this Pisidian city in ca. AD 500 and in the middle or second half of the 7th century AD are characterized by an MSK intensity of at least VIII and occurred on a fault very close to the city. Different investigation techniques (archaeoseismology, remote sensing and geomorphology, surface geology and structural data, 2D resistivity imaging and palaeoseismological trenching) have been applied at the archaeological site and its direct surroundings in search for the causative fault of these earthquakes. This multidisciplinary approach shows that each of the different approaches independently provides only partial, non-conclusive information with respect to the fault identification. Integration is imperative to give a conclusive answer in the search for the causative fault. This study has, indeed, revealed the existence of a to date unknown active normal fault system passing underneath ancient Sagalassos, i.e. the Sagalassos fault. A historical coseismic surface rupture event on this fault could be identified. This event possibly corresponds to the devastating Sagalassos earthquakes of ca. AD 500 and the middle or second half of the 7th century AD. Finally, this study demonstrates that in the particular geodynamic setting of SW Turkey archaeological sites with extensive earthquake-related damage form an important tool in any attempt to asses the seismic hazard.  相似文献   
417.
Two very high-frequency radars (VHFR) operating on the Opal coast of eastern English Channel provided a nearly continuous 35-day long dataset of surface currents over a 500 km2 area at 0.6–1.8 km resolution. Argo drifter tracking and CTD soundings complemented the VHFR observations, which extended approximately 25 km offshore. The radar data resolve three basic modes of the surface velocity variation in the area, that are driven by tides, winds and freshwater fluxes associated with seasonal river discharge. The first mode, accounting for 90% of variability, is characterized by an along-shore flow pattern, whereas the second and third modes exhibit cross-shore, and eddy-like structures in the current velocity field. All the three modes show the dominant semi-diurnal variability and low-frequency modulation by the neap-spring tidal cycle. Although tidal forcing provides the major contribution to variability of local currents, baroclinicity plays an important role in shaping the 3D velocity field averaged over the tidal cycle and may strongly affect tracer dynamics on larger time scales. An empirical orthogonal function (EOF) decomposition and a spectral rotary analysis of the VHFR data reveal a discontinuity in the velocity field occurring approximately 10 km offshore which was caused by the reversal in the sign of rotation of the current vector. This feature of local circulation is responsible for surface current convergence on ebb, divergence on flood and strong oscillatory vertical motion. Spectral analysis of the observed currents and the results of the Agro drifter tracking indicate that the line of convergence approximately follows the 30-m isobath. The most pronounced feature of the radar-derived residual circulation is the along-coast intensification of surface currents with velocity magnitude of 0.25 m/s typical for the Regions of Freshwater Influence (ROFI). The analysis has provided a useful, exploratory examination of surface currents, suggesting that the circulation off the Opal coast is governed by ROFI dynamics on the hypertidal background.  相似文献   
418.
Mixed siliciclastic‐carbonate deep‐marine systems (mixed systems) are less documented in the geological record than pure siliciclastic systems. The similarities and differences between these systems are, therefore, poorly understood. A well‐exposed Late Cretaceous mixed system on the northern side of the Eastern Greater Caucasus, Azerbaijan, provides an opportunity to study the interaction between contemporaneous siliciclastic and carbonate deep‐marine deposition. Facies analysis reveals a Cenomanian–early Turonian siliciclastic submarine channel complex that abruptly transitions into a Mid Turonian–Maastrichtian mixed lobe‐dominated succession. The channels are entrenched in lows on the palaeo‐seafloor but are absent 10 km towards the west where an Early Cretaceous submarine landslide complex acted as a topographic barrier to deposition. By the Campanian, this topography was largely healed allowing extensive deposition of the mixed lobe‐dominated succession. Evidence for irregular bathymetry is recorded by opposing palaeoflow indicators and frequent submarine landslides. The overall sequence is interpreted to represent the abrupt transition from Cenomanian–early Turonian siliciclastic progradation to c. Mid Turonian retrogradation, followed by a gradual return to progradation in the Santonian–Maastrichtian. The siliciclastic systems periodically punctuate a more widely extensive calcareous system from the Mid Turonian onwards, resulting in a mixed deep‐marine system. Mixed lobes differ from their siliciclastic counterparts in that they contain both siliciclastic and calcareous depositional elements making determining distal and proximal environments challenging using conventional terminology and complicate palaeogeographic interpretations. Modulation and remobilisation also occur between the two contemporaneous systems making stacking patterns difficult to decipher. The results provide insight into the behaviour of multiple contemporaneous deep‐marine fans, an aspect that is challenging to decipher in non‐mixed systems. The study area is comparable in terms of facies, architectures and the presence of widespread instability to offshore The Gambia, NW Africa, and could form a suitable analogue for mixed deep‐marine systems observed elsewhere.  相似文献   
419.
420.
Transmission and analytical electron microscopy has been used to study relicts of augite that occur in various stages of transformation to sodic pyroxene. The augite relicts are characterized by a hatching produced by two sets of former 001 exsolution lamellae that possess high dislocation densities and were altered completely to sodic pyroxene, even where the augite matrix is still fresh. With further alteration, the sodic pyroxene in these 001 lamellae recrystallized and grew into the augite matrix, resulting in irregular lamellae that consist of subgrains having low dislocation densities. Needles and thin (100) lamellae of sodic pyroxene developed on the 001 lamellae. Alteration of the augite matrix proceeded by growth of areas with defects (dislocations, stacking faults). All sodic pyroxenes in these microstructures have the same orientation as the precursor augite, indicating a topotactic reaction mechanism. The reactions occurred at roughly constant Si and mainly involved replacement of Ca and Mg by Na and Al. Dislocations may have played a prominent role in the transformation by acting as diffusion pathways and by migrating into untransformed augite, leaving sodic pyroxene in their wake. At the grain boundaries of the augite, discrete grains of sodic pyroxene formed without any fixed orientation relation with the augite, consistent with a non-topotactic reaction. The predominance of the topotactic reaction inside the augite over the non-topotactic grain-boundary reaction is attributed to the scarcity of fluids during eclogite metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号