首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   1篇
  国内免费   1篇
测绘学   5篇
大气科学   7篇
地球物理   51篇
地质学   145篇
海洋学   19篇
天文学   57篇
自然地理   10篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   15篇
  2016年   15篇
  2015年   6篇
  2014年   25篇
  2013年   20篇
  2012年   16篇
  2011年   20篇
  2010年   11篇
  2009年   15篇
  2008年   21篇
  2007年   25篇
  2006年   15篇
  2005年   9篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1969年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
31.
A new algorithm for single receiver DCB estimation using IGS TEC maps   总被引:5,自引:2,他引:3  
Maxim Keshin 《GPS Solutions》2012,16(3):283-292
A new algorithm for single receiver DCB estimation using GIM vertical TEC gridded values is proposed. It estimates receiver DCB and vertical residual ionospheric delays using the least squares approach with linear constraints. The performance of the proposed algorithm was assessed by comparing estimated receiver DCBs with those provided by the IGS. The same comparisons were done using two other algorithms for receiver DCB estimation. It is demonstrated that the proposed algorithm is capable of reproducing IGS DCB values at the level of 0.1?C0.3?ns, which is better than the level of agreement observed for the other two algorithms. For our tests, we considered data from more than 100 IGS stations, daily, such that all major regions of the world were covered. Besides, both ionospherically quiet and disturbed days were considered. It provides some evidence that the aforementioned level of agreement with IGS receiver DCB values does not significantly dependent on geographical region and the state of the ionosphere. The algorithm is easy to implement and can be considered for online use.  相似文献   
32.
33.
Mathematical model of porous media dissolution coupled with two-phase flow is proposed. The model is based on the conception of dissolvable porous medium with deformable mass-variable porous skeleton. Model can be used for simulation of coupled chemo- and hydrogeomechanical processes which are difficult to examine experimentally. Acidizing of calcite oil reservoir is used as an example of the process. Water solution of hydrochloric acid and oil are two fluid phases of the model with several components. Dissolvable porous media is treated as deformable mass-variable solid phase. Change in mass of the solid phase is caused by hydrochloric acid dissolving the calcite part of the solid phase. Dissolution is supposed to be congruent; kinetics is governed by the Nernst law. Software for numerical solution of the model is developed. It uses AmgCL parallel library for high-performance computing in order to deal with large algebraic systems on the each time step of calculations. The library uses algebraic multigrid methods for preconditioning and parallel iterative solvers. NVidia CUDA framework is used as a backend to perform GPGPU calculations, because it proved to be faster than OpenCL framework on this problem. Numerical experiments on the basis of data set from real reservoirs are conducted with the developed software. Good correlation between field and calculated data is achieved. Numerical experiments for different configurations of heterogeneous layer are performed. Acidizing of layers with highly permeable conduit and with random distribution of permeability is modeled.  相似文献   
34.
The nonlinear dynamics of long-wave perturbations of the inviscid Kolmogorov flow, which models periodically varying in the horizontal direction oceanic currents, is studied. To describe this dynamics, the Galerkin method with basis functions representing the first three terms in the expansion of spatially periodic perturbations in the trigonometric series is used. The orthogonality conditions for these functions formulate a nonlinear system of partial differential equations for the expansion coefficients. Based on the asymptotic solutions of this system, a linear, quasilinear, and nonlinear stage of perturbation dynamics is identified. It is shown that the time-dependent growth of perturbations during the first two stages is succeeded by the stage of stable nonlinear oscillations. The corresponding oscillations are described by the oscillator equation containing a cubic nonlinearity, which is integrated in terms of elliptic functions. An analytical formula for the period of oscillations is obtained, which determines its dependence on the amplitude of the initial perturbation. Structural features of the field of the stream function of the perturbed flow are described, associated with the formation of closed vortex cells and meandering flow between them. As a supplement, an asymptotic analysis of nonlinear dynamics of long-wave perturbations superimposed on a damped by small viscosity Kolmogorov flow (very large, but finite Reynolds numbers) is made. It is strictly shown that all velocity components of the perturbed flow remain bounded in this case.  相似文献   
35.
Doklady Earth Sciences - A first set of K–Ar isotopic ages obtained, which allowed to estimate the age of the largest volcanoes of the Anaunsky Dol (3.2, 2.2 and 1.9 Ma) and eruptive centers...  相似文献   
36.
Geology of Ore Deposits - The distribution of index minerals of the hydrothermal arsenide process of the formation of Ni‒Co–As (±U–Ag), Co–S–As...  相似文献   
37.
Quantifying the effects of pore-filling materials on elastic properties of porous rocks is of considerable interest in geophysical practice. For rocks saturated with fluids, the Gassmann equation is proved effective in estimating the exact change in seismic velocity or rock moduli upon the changes in properties of pore infill. For solid substance or viscoelastic materials, however, the Gassmann theory is not applicable as the rigidity of the pore fill (either elastic or viscoelastic) prevents pressure communication in the pore space, which is a key assumption of the Gassmann equation. In this paper, we explored the elastic properties of a sandstone sample saturated with fluid and solid substance under different confining pressures. This sandstone sample is saturated with octadecane, which is a hydrocarbon with a melting point of 28°C, making it convenient to use in the lab in both solid and fluid forms. Ultrasonically measured velocities of the dry rock exhibit strong pressure dependency, which is largely reduced for the filling of solid octadecane. Predictions by the Gassmann theory for the elastic moduli of the sandstone saturated with liquid octadecane are consistent with ultrasonic measurements, but underestimate the elastic moduli of the sandstone saturated with solid octadecane. Our analysis shows that the difference between the elastic moduli of the dry and solid-octadecane-saturated sandstone is controlled by the squirt flow between stiff, compliant, and the so-called intermediate pores (with an aspect ratio larger than that of compliant pore but much less than that of stiff pores). Therefore, we developed a triple porosity model to quantify the combined squirt flow effects of compliant and intermediate pores saturated with solid or viscoelastic infill. Full saturation of remaining stiff pores with solid or viscoelastic materials is then considered by the lower embedded bound theory. The proposed model gave a reasonable fit to the ultrasonic measurements of the elastic moduli of the sandstone saturated with liquid or solid octadecane. Comparison of the predictions by the new model to other solid substitution schemes implied that accounting for the combined effects of compliant and intermediate pores is necessary to explain the solid squirt effects.  相似文献   
38.
Peculiarities of the spatial distribution of intermediate Mediterranean waters (MW), which are the main source to maintain the heat and salt budgets at depths of 600–1500 m in the Atlantic Ocean, have been studied using the ARGO floats measurements database. About 75000 temperature and salinity profiles recorded by 900 ARGO floats in 2005–2014 in the Atlantic Ocean for latitudes from 20° to 50° N were used. To process these data, we used the ARGO-Based Model for Investigation of the Global Ocean (AMIGO). This technique allowed us for the first time to obtain a complete set of oceanographic characteristics up to a depth of 2000 m for different time averaging intervals (month, season, years). Joint analysis of the temperature, salinity, and velocity distributions at 700–1000 m depths made it possible to revise the distribution of MW and their penetration into the western part of the ocean across the Mid-Atlantic Ridge (MAR). It is shown that at depths of 700 and 1000 m, the Mid-Atlantic Ridge is a barrier to advective propagation of salty waters (>35.5 PSU) to the west and is transparent to fragments of destroyed intrathermocline lenses (ITL) with lower salinity (<35.4 PSU). In the Atlantic region, from 20° to 35° N and from 30° to 70° W, individual lens profiles with an anomalous salinity distribution were sought using ARGO measurements to detect ITL and its separate fragments. About 24 000 measurements from 370 ARGO floats were analyzed, and only about 3% of them showed weak salinity anomalies at 800–1200 m depths. No ITL were found from these observations. Analysis of long-term drifting of individual floats recording temperature and salinity profiles with anomalous layers made it possible to study the nature of MW transport through the MAR.  相似文献   
39.
Using Lagrangian methods, we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the 174°E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by the passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter–spring is responsible for eddy generation in the region.  相似文献   
40.
We provide a new scheme to classify Late Cenozoic volcanic rocks in the Udokan lava plateau based on isotope datings of rocks derived during the last 15 years. The scheme distinguishes five structural-material complexes (SMCs): Middle Miocene, Late Miocene, Early/Middle Pliocene, Late Pliocene, and Quaternary. Each SMC has its ejecta of central-type eruptions and subvolcanic emplacement episodes that classify themselves into individual rock complexes, while the ejecta of mass fissure effusions from three SMCs (the Late Miocene, the Early/Middle Pliocene, and the Late Pliocene) can be lumped into three stratigraphic series. Each series includes three suites, with the middle position (in the series section) being occupied by suites composed of basaltic melt differentiates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号