首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
测绘学   1篇
大气科学   5篇
地球物理   8篇
地质学   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  1988年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
Ethiopia experiences significant climate-induced drought and stress on crop and livestock productivity, contributing to widespread food insecurity. Here, we present subseasonal crop water stress analyses that indicate degrading, growing conditions along Ethiopia’s eastern highlands, including productive and populated highland regions. These seasonally shifting areas of increasing water stress stretch from the north to south across eastern Ethiopia, intersecting regions of acute food insecurity and/or high population. Crop model simulations indicate that between 1982 and 2014, parts of eastern Amhara and eastern Oromia experienced increasing water deficits during the critical sowing, flowering, and ripening periods of crop growth. These trends occurred while population in these regions increased by 143% between 2000 and 2015. These areas of enhanced crop water stress in south-central Ethiopia coincide with regions of high population growth and ongoing crop extensification. Conversely, large regions of relatively unpopulated western Ethiopia are becoming wetter. These areas may therefore be good targets for agricultural development.  相似文献   
12.
13.
Topography influences hydrological processes that in turn affect biogeochemical export to surface water on forested landscapes. The differences in long‐term average annual dissolved organic carbon (DOC), organic and inorganic nitrogen [NO3?‐N, dissolved organic nitrogen (DON)], and phosphorus (total dissolved phosphorus, TDP) export from catchments in the Algoma Highlands of Ontario, Canada, with similar climate, geology, forest and soil were established. Topographic indicators were designed to represent topographically regulated hydrological processes that influence nutrient export, including (1) hydrological storage potential (i.e. effects of topographic flats/depressions on water storage) and (2) hydrological flushing potential (i.e. effects of topographic slopes on potential for variable source area to expand and tap into previously untapped areas). Variations in NO3?‐N export among catchments could be explained by indicators representing both hydrological flushing potential (91%, p < 0.001) and hydrological storage potential (65%, p < 0.001), suggesting the importance of hydrological flushing in regulating NO3?‐N export as well as surface saturated areas in intercepting NO3?‐N‐loaded runoff. In contrast, hydrological storage potential explained the majority of variations among catchments in DON (69%, p < 0.001), DOC (94%, p < 0.001) and TDP (82%, p < 0.001) export. The lower explanatory power of DON (about 15% less) compared with that of DOC and TDP suggests another mechanism influencing N export, such as controls related to alternative fates of nitrogen (e.g. as gas). This study shows that simple topographic indicators can be used to track nutrient sources, sinks and their transport and export to surface water from catchments on forest landscapes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
14.
Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.  相似文献   
15.
Angessa  Abebe Tufa  Lemma  Brook  Yeshitela  Kumelachew 《GeoJournal》2021,86(3):1225-1243
GeoJournal - Land-use and land-cover (LULC) changes have been recognized universally as fundamental constituents of global biodiversity and ecosystem services change driver. The objectives of this...  相似文献   
16.
Brook Lemma   《Limnologica》2009,39(3):230-243
Bishoftu-Guda and Hora-Arsedi are two crater lakes found in close proximity with each other in a locality known as Bishoftu, 50 km south of Addis Ababa, capital city of Ethiopia. The main objective of this study was to measure some physico-chemical features and discuss their relations with the dial vertical migration (DVM) behavior of Paradiaptomus africanus, the dominant macrozooplankton in both lakes. By depth measurements of dissolved oxygen and temperature showed that there is persistent stratification in these lakes. Secchi depth was shallow and the water chemistry as shown from conductivity and chemical analysis were comparable between the two lakes. These data were compared with previous reports to bring out the overall limnological scenario of the two lakes. Then, the relations of these data to the DVM of P. africanus in both lakes were discussed. It was found out that DVM of P. africanus occurred in Lakes Bishoftu-Guda and Hora-Arsedi mostly within a range of about 3 m very likely for two reasons, namely avoidance of solar radiation and ultimately vertebrate visual predation. However, the depth of DVM of P. africanus was found to be very shallow probably due to high water turbidity that provided this calanoid sufficient refuge by daylight from both dangers, while at the same time P. africanus remained in warm and oxygen-rich waters. Temperature was not much of a factor affecting DVM as it remained above 19 °C at all depths. As this study was conducted over limited time frames, seasonal studies regarding changes in physico-chemical parameters, plankton, vertebrate predators and human interference were recommended so that the information so gathered could be used in the management of the study lakes.  相似文献   
17.
In this study, we examine the mass distributions, direct and semi-direct effects of different biomass burning aerosols (BBAs) over South Africa using the 12-year runs of the Regional Climate Model (RegCM4). The results were analyzed and presented for the main BB season (July–October). The results show that Mpumalanga, KwaZulu Natal and the eastern parts of Limpopo are the main local source areas of BBAs in South Africa. In comparison to carbonaceous aerosols, BB-induced sulfate aerosol mass loading and climatic effects were found to be negligible. All carbonaceous aerosols reduce solar radiation at the surface by enhancing local atmospheric radiative heating. The climatic feedback caused by BBAs, resulted in changes in background aerosol concentrations. Thus, on a regional scale, climatic effects of BBAs were also found in areas far away from the BBA loading zones. The feedback mechanisms of the climate system to the aerosol radiative effects resulted in both positive and negative changes to the low-level columnar averaged net atmospheric radiative heating rate (NAHR). Areas that experienced an NAHR reduction showed an increase in cloud cover (CC). During the NAHR enhancement, CC over arid areas decreased; whereas CC over the wet/semi-wet regions increased. The changes in surface temperature (ST) and surface sensible heat flux are more closely correlated with BBA semi-direct effects induced CC alteration than their direct radiative forcing. Furthermore, decreases (or increases) in ST, respectively, lead to the reductions (and enhancements) in boundary layer height and the vice versa on surface pressure. The direct and semi-direct effects of BBAs also jointly promoted a reduction and rise in surface wind speed that was spatially highly variable. Overall, the results suggest that the CC change induced by the presence of radiatively interactive BBAs is important to determine alterations in other climatic variables.  相似文献   
18.
The spatial and temporal variability of rainfall over Ethiopia during the summer (JJAS) season is studied using observations (both station and satellite based) and model simulation data. The simulation dataset is generated using the fourth version of the International Center for Theoretical Physics Regional Climate Model (RegCM4) for the period 1989–2005. Ethiopia is first divided into 12 homogeneous regions using criteria including rotated empirical orthogonal function (REOF), spatial correlation, seasonal cycles, and topographical features. Spatially averaged observed and simulated rainfall time series are then generated and analyzed for each region. Standardized rainfall anomalies of the observations and the simulated data are highly correlated over the northern, western, northeastern, central, and southwestern regions, while a weak correlation is found over the border regions of the country. The dominant modes of rainfall variability are identified using REOF, while time–frequency variations of different dominant modes are described by wavelet analysis. The first leading patterns of rainfall and upper wind (averaged between 100 and 300 hPa) are highly correlated and exhibit similar features between simulation and observations over the northern, western, southwestern, and eastern regions of Ethiopia. The second loading pattern of rainfall and the first loading pattern of low-level wind (averaged between 850 and 1,000 hPa) exhibit a dipole structure across the southwestern and northeastern regions of the country. The dominant signals in the first rotated principal component (RPC) of rainfall and upper level wind fields show a period of 4–5 and 2–3 years, while the dominant signals in the second RPC show a period of 2–3 years at a 0.05 significance level. The correlations of significant RPCs across gauge, gridded, and model rainfall fields with that of low and upper level winds show the presence of a significant relationship (correlation exceeding ~0.6). Overall, the RegCM4 shows a good performance in simulating the spatial and temporal variability of precipitation over Ethiopia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号