首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   7篇
测绘学   6篇
大气科学   21篇
地球物理   264篇
地质学   79篇
海洋学   2篇
天文学   138篇
综合类   2篇
自然地理   13篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   9篇
  2014年   14篇
  2013年   19篇
  2012年   9篇
  2011年   16篇
  2010年   13篇
  2009年   20篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   9篇
  2001年   6篇
  1999年   12篇
  1996年   16篇
  1995年   10篇
  1994年   15篇
  1993年   10篇
  1992年   16篇
  1991年   9篇
  1990年   12篇
  1989年   19篇
  1988年   12篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   10篇
  1983年   12篇
  1982年   6篇
  1981年   10篇
  1980年   10篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1975年   8篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1971年   11篇
  1970年   7篇
  1969年   6篇
  1968年   8篇
  1967年   6篇
  1966年   4篇
  1963年   6篇
  1960年   7篇
  1959年   4篇
  1957年   5篇
排序方式: 共有525条查询结果,搜索用时 15 毫秒
521.
A detailed accuracy assessment of the geopotential model Jgm3 is made based on independent single- and dual-satellite sea-height differences at crossovers from altimetry with Jgm3-based orbits. These differences, averaged over long time spans and in latitude bands, are converted to spectra (latitude-lumped coefficients) by least-squares estimation. The observed error spectra so obtained are then compared directly to error projections for them from the Jgm3 variance–covariance matrix. It is found from these comparisons that Jgm3 is generally well calibrated with respect to the crossover altimetry of and between Geosat, TOPEX/Poseidon (T/P), and Ers 1. Some significant discrepancies at a few lower orders (namely m=1 and 3) indicate a need for further improvement of Jgm3. A companion calibration (by order) of the geopotential model Jgm2 shows its variance–covariance matrix also to be generally well calibrated for the same single- and dual-satellite altimeter data sets (but based on Jgm2 orbits), except that the error projections for Geosat are too pessimistic. The analysis of the dual-satellite crossovers reveals possible relative coordinate system offsets (particularly for Geosat with respect to T/P) which have been discussed previously. The long-term detailed seasonally averaged Geosat sea level with respect to T/P (covering 1985–1996) should be useful in gauging the relative change in sea level between different parts of the ocean over the single 4-year gap between these missions (1988–1992). Received: 16 February 1998 / Accepted: 25 November 1998  相似文献   
522.
Palaeo- and rock-magnetic investigations of the St Bertrand’s Spring (Le Ravin de Font de St Bertrand) locality in France were carried out in order to contribute to, and improve, the stratigraphy of the Jurassic-Cretaceous boundary interval. Magnetic susceptibility shows slightly diamagnetic behaviour in the lowermost part of the profile and an increase (paramagnetic) towards its middle and upper parts. Rock-magnetic measurements throughout the section show magnetite as the main magnetic fraction, together with traces of hematite. Additionally, thermal demagnetization indicates the presence of goethite. Our magnetostratigraphy indicates three normal/reversed polarity sequences; possibly encompassing the magnetozones M19r to the M17n. This suggests that the St Bertrand section straddles the Tithonian/Berriasian boundary and reaches the middle Berriasian sensu lato.  相似文献   
523.
Molluscan shell debris is an under-exploited means of detecting, sourcing, and age-dating dredged sediments in open-shelf settings. Backscatter features on the Southern California shelf are suggestive of dredged sediment hauled from San Diego Bay but deposited significantly inshore of the EPA-designated ocean disposal site. We find that 36% of all identifiable bivalve shells > 2 mm (44% of shells > 4 mm) in sediment samples from this 'short dump' area are from species known to live exclusively in the Bay; such shells are absent at reference sites of comparable water depth, indicating that their presence in the short-dump area signals non-compliant disposal rather than natural offshore transport or sea level rise. These sediments lack the shells of species that invaded California bays in the 1970s, suggesting that disposal preceded federal regulations. This inexpensive, low-tech method, with its protocol for rejecting alternative hypotheses, will be easy to adapt in other settings.  相似文献   
524.
Sampling for suspended sediment concentrations (SSC) in inland waters is traditionally based on collecting samples at sparse locations and in limited intervals. A number of investigators explored the utility of earth-observing satellites and air-borne sensors for monitoring of SSC over vast areas. Two approaches are commonly deployed: (1) empirical relationships between a chosen remotely sensed quantity and the actual in-situ SSC; and (2) bio-optical models founded on radiative transfer modeling. Unfortunately, in-situ measurements are often unavailable for direct image calibration, and inherent optical properties of optically active constituents (specific scattering and absorption coefficients) are usually unknown. This paper examines the possibility to retrieve SSC from multispectral satellite imagery without any in-situ data, i.e. using only image-derived information. The fundamental principle of image selfcalibration relies on the fact that in the visual domain of wavelengths (∼400–700 nm) the at-sensor reflectance becomes “saturated“ at high SSC, whereas the near-infrared domain (∼700–900 nm) remains almost perfectly linearly related to sediment concentrations. The core idea of the self-calibrating procedure is rather simple and is based on fitting an exponential function between reflectance and SSC, with SSC replaced by a linear relationship between SSC and reflectance in the near-infrared domain. As a first approximation of the non-linearity between reflectance and SSC levels in the 400–700 nm range, we used the equation proposed by Schiebe et al. (1992), although other equations, especially those arising from optical theory could be used as well. The technique is illustrated on a moderately sediment-laden reservoir and two scenes acquired from Landsat ETM+. The standard error of the estimated SSC was below 15 mg/L (i.e. ∼25 % relative error for the observed range of SSC). Although the proposed algorithm does not yield better results than other models mentioned in the literature, the primary advantage of the outlined methodology is that no in-situ measurements (water sampling nor spectral profiling) are needed — i.e. only image-derived information is used.  相似文献   
525.
The Krusné hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long‐term routine sampling of bulk precipitation (1977–1996) and stream water (1977–1998) in a forested area on the south‐eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume‐weighted Ca2+ and SOconcentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume‐weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SONOwere highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die‐back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend in runoff. For Ca2+, Mg2+ and SOthe concentration minimum occurs in September and the maximum occurs in February or March, correlating with the seasonal baseflow. These solutes are primarily controlled by the contribution of soil water and groundwater to stream flow. During snowmelt, the meltwater generally causes concentrations to decrease as soil water and groundwater are diluted. For NO3 , average minimum concentrations occur in August at the end of the growing season concurrent with the lowest stream flow, and the maximum occurs in February and March with high stream flow during snowmelt. Seasonal stream water NOconcentration variations are large compared with the long‐term decrease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号