首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
大气科学   2篇
地球物理   5篇
地质学   4篇
海洋学   3篇
天文学   5篇
自然地理   1篇
  2020年   1篇
  2018年   2篇
  2014年   1篇
  2013年   1篇
  2009年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1993年   3篇
  1992年   1篇
  1982年   1篇
排序方式: 共有20条查询结果,搜索用时 859 毫秒
11.
We present virial mass estimates of young massive clusters (YMCs) in the starburst galaxies NGC1140 and M83, determined from high spectral resolution VLT echelle spectroscopy and high spatial resolution Hubble Space Telescope imaging. The survivability of such clusters is important in testing the scenario that YMCs are potentially proto-globular clusters. As young clusters, they lie in the domain in which dynamical masses appear to overestimate true cluster masses, most likely due to the clusters not being virialised. We find that the dynamical mass of NGC1140-1 is approximately ten times greater than its photometric mass. We propose that the most likely explanation for this disparity is the crowded environment of NGC1140-1, rather than this being solely due to a lack of virial equilibrium.  相似文献   
12.
Shallow shore zones are generally considered to provide juvenile habitats for many invertebrate and fish species and additionally serve as spawning grounds for important components of oceanic food webs and fishery resources such as herring (Clupea spp.). Herring attach their demersal eggs to benthic substrates, rendering reproduction success vulnerable to environmental changes and local habitat alterations. However, little information is available on the effects of different substrates on the survival of demersal eggs. Hypothesizing that the structural complexity of spawning substrates generally affects herring egg survival and that the effect magnitude depends on the suitability of ambient environment, field experiments were conducted on a major spawning ground of C. harengus in the Southwestern Baltic Sea. Herring eggs were artificially spawned on substrates of different structural complexities and incubated in situ under differing temperature regimes, at the beginning and the end of the natural herring spawning season, to include the full suite of stressors occurring on littoral spawning beds. Results of this study indicate a positive relation between high structural complexity of spawning substrates and herring egg survival. Mean egg mortality was three times higher on substrates of lowest complexity than on highly complex substrates. These differences became even more prominent under unfavorable conditions that appeared with rising water temperatures later in the spawning season. Although the mechanisms are still unclear, we conclude that structural complexity, particularly formed by submerged aquatic vegetation, provides a crucial prerequisite for the successful reproduction of substrate spawning marine fishes such as herring in the Baltic Sea.  相似文献   
13.
This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China’s power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries’ power sector and its emissions. We first adjusted the model to China’s present-day economy and power sector. We then developed different scenarios based on story lines for possible future developments in China. We simulated China’s carbon-based electricity production system of today and possible future transitions towards a low-carbon system relying on renewable and low-carbon energies. In our analysis, we compare the business-as-usual scenarios with more sustainable energy scenarios. We found that by increasing the share of renewable and nuclear energies to different levels, between 17% and 57% of all CO2 emissions from the power sector could be avoided by 2030 compared to the business-as-usual scenario. We also found that electricity generation costs increase when more sustainable power plants are installed. As a conclusion, China has two options: choosing for high climate change mitigation and high costs or choosing for moderate climate change mitigation and moderate costs. In case high climate change mitigation will be chosen, development assistance is likely to be needed to cover the costs.  相似文献   
14.
Distribution of more than 300 gold-bearing samples from the Livengood (Tolovana) and parts of the Fairbanks and Rampart mining districts in central Alaska, USA, indicate that the concentration of gold in placers is spatially related both to structural features and to Late Cretaceous and (or) Tertiary felsic plutons. The regional consistency of these spatial relationships is demonstrated by proximity analysis using a Geographic Information System (GIS), and suggests a genetic association between faults, felsic plutons, and gold occurrences. The local presence of gold within several of the plutons indicates that these are the source of some of the gold. In addition, some gold occurs proximal to faults where plutons are not present, suggesting that some of the gold was also derived from the country rock.We envision a model whereby weakly mineralized solutions, thermally driven by latent plutonic heat, were enriched by circulation through clastic units that may have had a naturally elevated gold background. The resultant enriched solutions were channeled and reconcentrated along or adjacent to large-scale fault systems. Future exploration to define individual target areas should be directed toward areas where Late Cretaceous and (or) Tertiary felsic plutons occur near major faults.  相似文献   
15.
Moll DM  Vestal JR 《Icarus》1992,98(2):233-239
Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillius subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe(3+)-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe(3+)-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe(3+)-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.  相似文献   
16.
A physical and a biological one-dimensional upper layer model for the stimualtion of the annual cycles of both the physical and the phytoplankton dynamics, are used to estimate the annual primary production in the central North Sea. The simulations are driven with actual 3-hourly meteorological standard observations and estimated radiation data for the 25 years 1962 to 1986. The high variability of the forcing generates a considerable variability in the physical and biological oceanic mixed layer dynamics.As an example, the model results from two years with contrasting meteorological conditions, 1963 and 1967, are discussed in detail. The mixing regimes generated are very different which result in different annual phytoplankton cycles. During 1963 when conditions were warm and windless, the early establishment of a calm upper layer water mass enabled a strong spring plankton bloom; whereas in 1967, which was stormy and cold, convective overturning continued until April, suppressing an early spring bloom and prolonging the blooming into summer.For the meteorological conditions observed in 1962 to 1986, the simulations yield an integrated annual water column gross production of 83.5–99.0 gC m−2a−1 and an integrated annual water column net production ranging between 43.0 and 64.2 gC m−2a−1 for the central North Sea. Grazing by the prescribed copepod population ranges from 24.5 to 40.0 gC m−2a−1. The production events are described irregularly over the different years, total gross production varies only about 17%, and total net production by about 21%. The nutrient taken up by the algae is 2.6 to 3.2 times the winter concentration of that layer which in summer is situated above the seasonal thermocline. The additional nutrient is provided by local regeneration and by turbulent entrainment from below the thermocline. Local regeneration in the upper layer provides about 2.4 and 0.3 times the entrained amount of phosphate during spring and summer, respectively. In the 25 years 16 late summer or early fall storm events entrained more than 1.2mmol P m−2d−1 into the depleted upper layer, potentially initiating new production events.The simulated annual cycles can be validated with the available data only in the sense that the variability, but not single events, can be compared to measurements. Such comparisons between simulated and field data show that the simulation reproduces the general features of annual phytoplankton cycles. This establishes confidence in those calculated estimates, for which field data are not directly comparable. It is concluded that weather-induced variability can explain most of the observed variability in phytoplankton in annual cycles.A typical annual cycle of phytoplankton biomass dynamics is presented. Ratios of daily process contributions show that the balances between the different processes change during the annual cycle. Diagrams of the mean and seasonal phosphorus flow are derived from the simulations. Two thirds of the primary production are channelled through the copepods, and one third is lost by other processes. Organic matter corresponding to more than the initial amount of nutrients in the mixed layer is sedimenting out of the upper layer, and about the same amount is regenerated at the bottom and mixed into the water column at the end of the year.The critical points in the model: grazing, recycling of nutrients and mixing in the bottom boundary layer, are discussed. The model still needs to be refined with respect to these processes in order to achieve the delicate balances required to generate fall blooms. A series problem is the appropriateness of primary production measurements for a comparison with simulated quantities. Attempts should be made to establish a one-to-one correspondence between model-derived production quantities and measurements.Single events are important, so both sampling strategies and the estimation of fluxes from data should take account of the possible occurrence of such events, which may have been missed in the observations, by presenting ranges covering the realistic variance rather than mean values.  相似文献   
17.
18.
Global sea-level rise poses a significant threat not only for coastal communities as development continues but also for national economies. This paper presents estimates of how future changes in relative sea-level rise puts coastal populations at risk, as well as affect overall GDP in the conterminous United States. We use four different sea-level rise scenarios for 2010–2100: a low-end scenario (Extended Linear Trend) a second low-end scenario based on a strong mitigative global warming pathway (Global Warming Coupling 2.6), a high-end scenario based on rising radiative forcing (Global Warming Coupling 8.5) and a plausible very high-end scenario, including accelerated ice cap melting (Global Warming Coupling 8.5+). Relative sea-level rise trends for each US state are employed to obtain more reasonable rates for these areas, as long-term rates vary considerably between the US Atlantic, Gulf and Pacific coasts because of the Glacial Isostatic Adjustment, local subsidence and sediment compaction, and other vertical land movement. Using these trends for the four scenarios reveals that the relative sea levels predicted by century's end could range – averaged over all states – from 0.2 to 2.0 m above present levels. The estimates for the amount of land inundated vary from 26,000 to 76,000 km2. Upwards of 1.8 to 7.4 million people could be at risk, and GDP could potentially decline by USD 70–289 billion. Unfortunately, there are many uncertainties associated with the impact estimates due to the limitations of the input data, especially the input elevation data. Taking this into account, even the most conservative scenario shows a significant impact for the US, emphasizing the importance of adaptation and mitigation.  相似文献   
19.
A three-dimensional ecosystem model for the North Sea which includes competition between Pseudocalanus elongatus and the rest of the zooplankton biomass was applied to describe the seasonal cycle of zooplankton in 2003–2004. The paper presents the comparison of simulated stage-resolved abundances with copepod counts at several stations in the German Bight during the GLOBEC-Germany project from February to October 2004. A validation of influential state variables gives confidence that the model is able to calculate reliably the stage development and abundances of P. elongatus as well as the range of bulk zooplankton biomass, and thus the ratio of population biomass to total biomass. In the German Bight, the population is below 20% in spring. The ratio increases up to 50% during summer. The number of generations was estimated from peaks in egg abundance to about 4–8 generations of P. elongatus in the southern North Sea. A mean of four generations per year were estimated in the central North Sea, six to eight generations northwest of the Dogger Bank (tails end) and five generations in the German Bight.  相似文献   
20.
During their spring migration, Atlantic herring (Clupea harengus) populations in the Baltic Sea rely on shallow transitional waters, such as estuaries, bays, and lagoons for spawning. Such inshore spawning grounds are ecologically important by providing suitable substrates for demersal egg deposition. These habitats are often highly impacted by multiple anthropogenic threats. Decades of eutrophication have caused a decline in depth distribution of submerged aquatic vegetation, the main herring spawning substrate in the Baltic Sea. Nowadays, spawning beds are limited to the shallow littoral zone (≤3 m depth). Accordingly, macrophytes are increasingly exposed to mechanic forcing due to storm-induced wave action. Generally, reproductive success and year class strength of the Western Baltic herring population is strongly determined by the survival of early life stages such as eggs and larvae in local nursery areas. However, explicit mechanisms by which local stressors might affect overall recruitment are currently not well understood. Hypothesizing that aquatic vegetation limited by water depth causes high herring egg mortality due to increased exposure to storm-induced hydrodynamics, we performed a combination of field studies investigating the impact of storm events on herring egg loss. Results of an egg loss experiment revealed a total egg loss of 29% in one single spawning bed during a storm event within the spawning season and the quantification of eggs attached to macrophyte litter on the shoreline emphasize the potential for regional weather extremes such as storm events to act as influential stressors for herring reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号