首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
测绘学   1篇
大气科学   6篇
地球物理   22篇
地质学   38篇
海洋学   4篇
自然地理   1篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
11.
This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient CT; reflection coefficient CR, and energy dissipation coefficient CE coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that CR reaches the maximum value when B/L = 0.46n while it is smallest when B/L=0.46n+0.24 (n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and CR and CT ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced CR, will enhance the structure’s wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.  相似文献   
12.
The Agadir-Essaouira area in the occidental High Atlas Mountains of Morocco is characterized by a semi-arid climate. The scarcity and quality of water resources, exacerbated by long drought periods, constitute a major problem for a sustainable development of this region. Groundwater resources of carbonate units within Jurassic and Cretaceous aquifers are requested for drinking and irrigation purposes. In this study, we collected 84 samples from wells, boreholes, springs, and rivers. Hydrochemical and isotopic data were used to examine the mineralization and origin of water, which control groundwater quality. The chemical composition of water seems to be controlled by water-rock interactions, such as dissolution of carbonates (calcite and dolomite), weathering of gypsum, as well as ion exchange processes, which explain the observed variability. Stable isotopes results show that groundwater from the mainly marly Cretaceous aquifer are submitted to an evaporation effect, while samples from the chiefly calcareous Jurassic aquifer indicate a meteoric origin, due to a rapid infiltration of recharge runoff through the karstic outcrops. The low values of δ18O and δ2H suggest a local recharge from areas with elevations ranging from 400 to 1200 m for the Cretaceous aquifer and from 800 to 1500 m for the Jurassic units.  相似文献   
13.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   
14.
Modeling of surface water quality based on a deductive approach is highly non-linear, varies with time, is spatially distributed and is difficult to incorporate as part of decision-support systems. A Neural Networks (NNs) procedure provides a reliable analysis in several science and technology fields. NNs are often applied to develop statistical models for intrinsically non-linear systems. In this investigation, NNs are used in the induction of a water quality model from available field measurements for the Bahr Hadus drain in the Eastern Egyptian Delta. Two models, namely, feed-forward back propagation (BP) and cascade correlation (CC), were used. It is concluded that the CCNN model produced slightly more accurate results and learned very quickly compared with the BP procedure. The results indicated that the NNs model could be used as a non-linear dynamic system model to encapsulate site-specific knowledge and emulate the temporal sequence of one-dimensional flow systems. This NNs model undoubtedly will reduce the cost and save time in this class of problems.  相似文献   
15.
16.
ABSTRACT

This work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis  相似文献   
17.
The south Solaf zone in SW Sinai comprises a metasedimentary sequence of metagraywackes intercalated with minor metavolcanic sheets, metasiltstones, meta-arenites, and calc–silicates. The metavolcanics (basalt–andesite) show high- to medium-K calc–alkaline nature. They exhibit distinctive Nb-Ta negative anomalies relative to enriched LILE, being highly similar to active continental margin lavas, but they also have the characteristics of rift-related magmatism. Magmas of similar composition are interpreted to be formed in an extensional environment and their source regions are zones of enriched subcontinental lithosphere. The metasediments are poor to moderate sorting, intercalated to the north with minor impure calcareous layers. Geochemical investigation shows that they are immature to semi-mature sediments derived from a source of mafic to felsic composition. These metasediments are chemically similar to the active continental margins and are comparable to the Feiran gneisses and metagraywackes that were deposited before 800 Ma in an extensional environment. The investigated rocks suffered LP-HT amphibolite facies metamorphism. The P-T estimates using various thermobarometric calibrations gave temperatures of 554–610 °C and pressures of 2.2–4.0 kbar.  相似文献   
18.
his study presents the first and detail field investigations of exposed deposits at proximal sections of the Barombi Mbo Maar (BMM), NE Mt Cameroon, with the aim of documenting its past activity, providing insight on the stratigraphic distribution, depositional process, and evolution of the eruptive sequences during its formation. Field evidence reveals that the BMM deposit is about 126m thick, of which about 20m is buried lowermost under the lake level and covered by vegetation. Based on variation in pyroclastic facies within the deposit, it can be divided into three main stratigraphic units: U1, U2 and U3. Interpretation of these features indicates that U1 consists of alternating lapilli-ash-lapilli beds series, in which fallout derived individual lapilli-rich beds are demarcated by surges deposits made up of thin, fine-grained and consolidated ash-beds that are well-defined, well-sorted and laterally continuous in outcrop scale. U2, a pyroclastic fall-derived unit, shows crudely lenticular stratified scoriaceous layers, in which many fluidal and spindle bombs-rich lapilli-beds are separated by very thin, coarse-vesiculatedash-beds, overlain by a mantle xenolith- and accidental lithic-rich explosive breccia, and massive lapilli tuff and lapillistone. U3 displays a series of surges and pyroclastic fall layers. Emplacement processes were largely controlled by fallout deposition and turbulent diluted pyroclastic density currents under “dry” and “wet” conditions. The eruptive activity evolved in a series of initial phreatic eruptions, which gradually became phreatomagmatic, followed by a phreato-Strombolian and a violent phreatomagmatic fragmentation. A relatively long-time break, demonstrated by a paleosol between U2 and U3, would have permitted the feeding of the root zone or the prominent crater by the water that sustained the next eruptive episode, dominated by subsequent phreatomagmatic eruptions. These preliminary results require complementary studies, such as geochemistry, for a better understanding of the changes in the eruptive styles, and to develop more constraints on the maar’s polygenetic origin.  相似文献   
19.
The Ouarsenis area is one of the most developed karstic systems of Algeria. It is a karst reservoir drinking water with a population of more than 50,000 people taking fully benefit from it. To understand the development of this karstic system, the local tectonic history of the four main mountain ranges of this culminating area (Ouarsenis) has been analyzed. Although previously identified primarily Cenozoic tectonic activities have been observed, a set of NW-SE joints intersecting the Jurassic limestone has been associated to a post-nappes tectonic events. Moreover, numerous joint sets oriented NNE/SSW have been identified almost over the entire culminating area. These joints are the direct consequence of the following stress history: (i) a NW/SE shortening responsible for a major overlap and the first fold (P1) phase, (ii) a second NNE/SSW shortening stage responsible for the second folding (P2) phase associated with 70° N sinistral strike-slip trend, (iii) a WNW/ESE extension phase resulting from the change of σ 3 stress vertical axis, and (iv) a shearing stress creating a 120° N sinistral strike-slip fault. Only the late phases are responsible of the development of joints, which have been karstified later on. Indeed, significant families of karstified joints, i.e., 20° and 70° N have been found. These joints are related to the extensional and shearing modes, respectively, and linked to a particular in situ karstogenesis. Moreover, this study suggests an ancient establishment of the karstic systems in the Ouarsenis region in at least two stages: pre-figured and activated behaviors during the Cenozoic.  相似文献   
20.
Predicting the impact of land use changes on the hydrological response is crucial for water resource management. In the particular case of small catchments (1–10 km2), distributed models could provide useful answers regarding the effects of cultivation practices and man‐made works on water fluxes. However, the impacts of specific land use spatial arrangements are difficult to predict because of the prohibitive number of possible cases to consider. Focusing on surface runoff, this article describes a strategy based on a water particle tracking routine to be plugged‐in a distributed model that is designed to determine the spatial arrangements of land management practices that have the greatest impact on volume, peak discharge and lag time at the catchment outlet. A case study is described; the hydrological response of the Roujan catchment (Herault, France) is simulated with the MHYDAS model. The Roujan catchment contains a vineyard in a Mediterranean climate in a landscape in which weeding practices highly influence the partition between soil infiltration and runoff. Results showed that the proposed strategy is much more efficient than a random approach to design the spatial arrangements of the vineyard weeding practices with the greatest impact. Therefore, the proposed strategy may lead to innovative policies for the spatial planning of land management practices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号